A371294 Numbers whose binary indices are connected and pairwise indivisible, where two numbers are connected iff they have a common factor. A hybrid ranking sequence for connected antichains of multisets.
1, 2, 4, 8, 16, 32, 40, 64, 128, 160, 256, 288, 296, 416, 512, 520, 544, 552, 640, 672, 800, 808, 928, 1024, 2048, 2176, 2304, 2432, 2560, 2688, 2816, 2944, 4096, 8192, 8200, 8224, 8232, 8320, 8352, 8480, 8488, 8608, 8704, 8712, 8736, 8744, 8832, 8864, 8992
Offset: 1
Keywords
Examples
The terms together with their prime indices of binary indices begin: 1: {{}} 2: {{1}} 4: {{2}} 8: {{1,1}} 16: {{3}} 32: {{1,2}} 40: {{1,1},{1,2}} 64: {{4}} 128: {{1,1,1}} 160: {{1,2},{1,1,1}} 256: {{2,2}} 288: {{1,2},{2,2}} 296: {{1,1},{1,2},{2,2}} 416: {{1,2},{1,1,1},{2,2}} 512: {{1,3}} 520: {{1,1},{1,3}} 544: {{1,2},{1,3}} 552: {{1,1},{1,2},{1,3}} 640: {{1,1,1},{1,3}} 672: {{1,2},{1,1,1},{1,3}} 800: {{1,2},{2,2},{1,3}} 808: {{1,1},{1,2},{2,2},{1,3}} 928: {{1,2},{1,1,1},{2,2},{1,3}}
Crossrefs
Programs
-
Mathematica
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1000],stableQ[bpe[#],Divisible]&&connectedQ[prix/@bpe[#]]&]
Comments