A371300 Triangle read by rows: Riordan array (1/(1 - x), (1 + x)/(1 - x - x^2)).
1, 1, 2, 1, 5, 4, 1, 10, 16, 8, 1, 18, 45, 44, 16, 1, 31, 107, 158, 112, 32, 1, 52, 232, 461, 488, 272, 64, 1, 86, 474, 1190, 1680, 1392, 640, 128, 1, 141, 930, 2831, 5009, 5512, 3760, 1472, 256, 1, 230, 1772, 6355, 13541, 18602, 16816, 9760, 3328, 512
Offset: 0
Examples
Triangle begins: [0] 1; [1] 1, 2; [2] 1, 5, 4; [3] 1, 10, 16, 8; [4] 1, 18, 45, 44, 16; [5] 1, 31, 107, 158, 112, 32; [6] 1, 52, 232, 461, 488, 272, 64; [7] 1, 86, 474, 1190, 1680, 1392, 640, 128;
Programs
-
Maple
T := proc(n, k) option remember; if k > n or k < 0 then 0 elif k = 0 then 1 else 2*T(n-1, k-1) + T(n-1, k) + T(n-2, k-1) + T(n-2, k) fi end: for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Apr 22 2024
-
SageMath
# using function riordan_array from A256893 riordan_array(1/(1 - x), (1 + x)/(1 - x - x^2), 8)
Formula
T(n, k) = 2*T(n-1, k-1) + T(n-1, k) + T(n-2, k-1) + T(n-2, k), T(n, k) = 0 if k > n or if k < 0, T(n, 0) = 1. - Philippe Deléham , Apr 22 2024