A371344 a(n)/144 is the minimum squared volume > 0 of a tetrahedron with integer edge lengths whose largest is n.
2, 11, 26, 47, 54, 107, 146, 191, 242, 299, 191, 134, 146, 146, 151, 767, 423, 151, 854, 558, 764, 491, 503, 464, 146, 146, 431, 944, 666, 146, 146, 350, 599, 311, 599, 511, 1719, 2286, 944, 1871, 1679, 990, 2714, 1907, 990, 551, 959, 1199, 1244, 990, 1206, 854, 764
Offset: 1
Examples
a(1) = 2 corresponds to the regular tetrahedron with all edges equal to 1. Its volume is sqrt(2/144) = 0.11785113...
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..450
- IBM Research, Tetrahedron Volumes, Ponder This Challenge November 2024.
- Sascha Kurz, Enumeration of integral tetrahedra, arXiv:0804.1310 [math.CO], 2008.
- Hugo Pfoertner, Plot of log_10(n) vs n, using Plot 2.
Crossrefs
Programs
-
PARI
\\ See A371345. Replace final #Set(Vec(L)) by vecmin(Vec(L))/2 \\ Second version using simple minded loops and triangle inequalities \\ Not suitable for larger n a371344(n) = {my (Vmin=oo,w=vector(6)); w[1]=n; for(w2=1,n,w[2]=w2; for(w3=1,n,w[3]=w3; for(w4=1,n,w[4]=w4; for(w5=1,n,w[5]=w5; for(w6=1,n,w[6]=w6; forperm (w, v, if(v[4]+v[5]
0, Vmin=min(Vmin,CM)))))))); Vmin/2}; \\ return value corrected by M. F. Hasler, Dec 02 2024 -
PARI
/* equivalent to the preceding, but simplified */ A371344(n) = {my (Vmin=oo,CM, n2=n^2); forvec(v=vector(5,k,[1,n]), v[4]+v[5]
= Vmin || Vmin=CM); Vmin/2} \\ M. F. Hasler, Dec 02 2024
Extensions
a(33), a(37), a(38), and a(43) corrected by Hugo Pfoertner, Dec 03 2024