cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A097125 Number of noncongruent integer-sided tetrahedra with largest side n.

Original entry on oeis.org

1, 4, 16, 45, 116, 254, 516, 956, 1669, 2760, 4379, 6676, 9888, 14219, 19956, 27421, 37062, 49143, 64272, 82888, 105629, 133132, 166090, 205223, 251624, 305861, 369247, 442695, 527417, 624483, 735777, 861885, 1005214, 1166797, 1348609
Offset: 1

Views

Author

Sascha Kurz, Jul 26 2004

Keywords

Crossrefs

Programs

  • Mathematica
    cmd3[d01_, d02_, d03_, d12_, d13_, d23s_] := Det[{{0, d01^2, d02^2, d03^2, 1}, {d01^2, 0, d12^2, d13^2, 1}, {d02^2, d12^2, 0, d23s, 1}, {d03^2, d13^2, d23s, 0, 1}, {1, 1, 1, 1, 0}}];
    cmd30s = Sqrt /@ Solve[cmd3[d01, d02, d03, d12, d13, d23s] == 0, d23s][[;;,1,2]];
    edgePermutations = PermutationList[#, 6] & /@ GroupElements@PermutationGroup[{Cycles[{{2, 4}, {3, 5}}], Cycles[{{1, 2}, {5, 6}}], Cycles[{{2, 3}, {4, 5}}]}];
    canonical[dd_] := AllTrue[edgePermutations, OrderedQ[{dd[[#]], dd}] &];
    a[d_] := Module[{s = 0, dd, uu}, Do[With[{roots = (cmd30s /. {d01 -> d})},
       dd = Min[Floor /@ roots + 1]; uu = Min[Max[Ceiling /@ roots - 1], d];
       Do[If[canonical[{d, d02, d03, d12, d13, d23}], s += 1], {d23, dd, uu}]],
      {d02, Quotient[d, 2] + 1, d}, {d12, d + 1 - d02, d02}, {d03, d + 1 - d02, d02}, {d13, d + 1 - d03, d02}]; s];
    Array[a, 10] (* Andrey Zabolotskiy, Apr 04 2024, after Kurz's Algorithm 1 *)

A371070 a(n) is the number of distinct volumes > 0 of tetrahedra with the sum of their integer edge lengths equal to n.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 2, 3, 6, 5, 7, 12, 10, 16, 19, 21, 26, 34, 37, 44, 56, 60, 67, 93, 92, 111, 137, 140, 166, 192, 211, 246, 279, 306, 333, 392, 428, 464, 538, 565, 627, 709, 768, 826, 939, 998, 1089, 1230, 1312, 1403, 1590, 1658, 1798, 1987, 2088, 2266, 2495
Offset: 6

Views

Author

Hugo Pfoertner, Mar 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a371070(n) = {my (L=List()); forpart (w=n, forperm (w,v, if(v[4]+v[5]0, listput (L,CM))), [1,n], [6,6]); #Set(Vec(L))};
    
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions, multiset_permutations
    def A371070(n):
        CM = lambda x,y,z,t,u,v: (x*y*z<<2)+(a:=x+y-t)*(b:=x+z-u)*(c:=y+z-v)-x*c**2-y*b**2-z*a**2
        TR1 = lambda x,y,z: not(x+y0 and M not in d:
                        d.add(M)
                        c += 1
        return c # Chai Wah Wu, Mar 23 2024

Formula

a(n) <= A208454(n).

A371344 a(n)/144 is the minimum squared volume > 0 of a tetrahedron with integer edge lengths whose largest is n.

Original entry on oeis.org

2, 11, 26, 47, 54, 107, 146, 191, 242, 299, 191, 134, 146, 146, 151, 767, 423, 151, 854, 558, 764, 491, 503, 464, 146, 146, 431, 944, 666, 146, 146, 350, 599, 311, 599, 511, 1719, 2286, 944, 1871, 1679, 990, 2714, 1907, 990, 551, 959, 1199, 1244, 990, 1206, 854, 764
Offset: 1

Views

Author

Hugo Pfoertner, Mar 19 2024

Keywords

Examples

			a(1) = 2 corresponds to the regular tetrahedron with all edges equal to 1. Its volume is sqrt(2/144) = 0.11785113...
		

Crossrefs

Subset of A371071.
A001014(n)/72 are the corresponding maximum squared volumes.

Programs

  • PARI
    \\ See A371345. Replace final #Set(Vec(L)) by vecmin(Vec(L))/2
    \\ Second version using simple minded loops and triangle inequalities
    \\ Not suitable for larger n
    a371344(n) = {my (Vmin=oo,w=vector(6)); w[1]=n; for(w2=1,n,w[2]=w2; for(w3=1,n,w[3]=w3; for(w4=1,n,w[4]=w4; for(w5=1,n,w[5]=w5; for(w6=1,n,w[6]=w6;
    forperm (w, v, if(v[4]+v[5]0, Vmin=min(Vmin,CM)))))))); Vmin/2}; \\ return value corrected by M. F. Hasler, Dec 02 2024
    
  • PARI
    /* equivalent to the preceding, but simplified */
    A371344(n) = {my (Vmin=oo,CM, n2=n^2); forvec(v=vector(5,k,[1,n]), v[4]+v[5]= Vmin || Vmin=CM); Vmin/2} \\ M. F. Hasler, Dec 02 2024

Extensions

a(33), a(37), a(38), and a(43) corrected by Hugo Pfoertner, Dec 03 2024

A371969 Perimeters of triangles with integer sides, which can be decomposed into 3 triangles that have a common vertex strictly inside the surrounding triangle and also integer sides.

Original entry on oeis.org

49, 50, 54, 64, 75, 78, 80, 88, 90, 91, 98, 100, 104, 108, 112, 117, 120, 121, 125, 126, 128, 133, 136, 140, 144, 147, 150, 156, 160, 162, 165, 168, 169, 170, 175, 176, 180, 182, 184, 188, 192, 195, 196, 198, 200, 203, 208, 210, 216, 220, 224, 225, 231, 234, 238, 240
Offset: 1

Views

Author

Klaus Nagel and Hugo Pfoertner, Apr 14 2024

Keywords

Examples

			a(1) = 49 is the perimeter of the first decomposable triangle with sides of the outer triangle [8, 19, 22], and sides meeting at the 4th "inner" vertex: 17, 6, 4. The 3 inner triangles have sides [8, 4, 6], [19, 17, 4], and [22, 6, 17].
		

References

  • These triangles can be viewed as degenerate tetrahedrons, in which all triangular inequalities for the faces are satisfied, and the Cayley-Menger determinant, which determines whether the 4th vertex yields a valid tetrahedron, takes the value 0.

Crossrefs

Programs

  • PARI
    H(a,b,c) = {my (s=(a+b+c)/2); s*(s-a)*(s-b)*(s-c)};
    CM(w1,w2,w3,v1,v2,v3) = matdet([0,1,1,1,1; 1,0,w3^2,w2^2,v1^2; 1,w3^2,0,w1^2,v2^2; 1,w2^2,w1^2,0,v3^2; 1,v1^2,v2^2,v3^2,0]);
    is_a371969(peri) = {forpart (w=peri, my (A=H(w[1],w[2],w[3]), epsA=1e-12); for (v1=1, w[3]-2, for (v2=w[3]-v1+1, w[3]-2, my (A3=H(w[3],v2,v1)); if (A3>=A, next); for (v3=1, w[3]-2, if (v3+v2<=w[1] || v3+v1<=w[2], next); my (A1=H(w[1],v2,v3)); if (A1>=A, next); my (A2=H(w[2],v1,v3)); if (A2>=A, next); my (C=CM(w[1],w[2],w[3],v1,v2,v3)); if (C==0 && abs(sqrt(A)-sqrt(A1)-sqrt(A2)-sqrt(A3)) < epsA,
    \\ print (peri," ",Vec(w)," ",[v1,v2,v3]);
    return(1))))), [1,(peri-1)\2], [3,3]); 0};
    for (n=3, 100, if (is_a371969(n), print1(n,", ")))

A371972 a(n) is the number of distinct areas of triangles with integer sides whose largest side is n.

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 110, 120, 131, 144, 156, 168, 182, 196, 210, 225, 239, 256, 270, 288, 306, 321, 342, 361, 380, 399, 420, 441, 460, 484, 505, 527, 552, 576, 599, 623, 649, 673, 702, 729, 752, 781, 808, 840, 870, 900
Offset: 1

Views

Author

Hugo Pfoertner, Apr 16 2024

Keywords

Crossrefs

See the formula section for the relationships with A002620, A173196, A316843, A316853.

Programs

  • PARI
    A2(a,b,c) = {my(s=(a+b+c)/2);s*(s-a)*(s-b)*(s-c)};
    a371972(n) = {my (A=List()); for(s2=1,n, for(s3=1,s2, if(s2+s3>n, listput(A, A2(n,s2,s3))))); #Set(A)};

Formula

a(n) <= A002620(n+1), with equality for n <= 20.
a(n) = |{A316853(k) : A316843(k) = n}| = |{A316853(k) : A173196(n) < k <= A173196(n+1)}|. - Peter Munn, Jul 30 2025
Showing 1-5 of 5 results.