cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371351 Number of achiral polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 15, 37, 73, 182, 364, 952, 1944, 5169, 10659, 28842, 60115, 164450, 345345, 953814, 2016144, 5609760, 11920740, 33378072, 71250060, 200553733, 429757960, 1215177680, 2612635888, 7416503776
Offset: 1

Views

Author

Robert A. Russell, Mar 19 2024

Keywords

Comments

Also number of achiral simplicial 3-clusters or stack polytopes with n tetrahedral cells. An achiral polyomino is identical to its reflection.

Crossrefs

Sum of achiral symmetry types (A047775, A047773, A047760, A047754, A047753, A047751, A047771, A047766 [type N], A047765, A047764) in Beineke link.
Cf. A007173 (oriented), A027610 (oriented), A371350 (chiral), A001764 (rooted), A208355(n-1) {3,oo}, A182299 {3,3,3,oo}.

Programs

  • Mathematica
    Table[(If[OddQ[n],3Binomial[(3n-1)/2,n],2Binomial[3n/2,n]]+If[1==Mod[n,4],3Binomial[(3n-3)/4,(n-1)/2],0]+If[2==Mod[n,6],3Binomial[n/2-1,(n-2)/3],0])/(3n+3),{n,30}]

Formula

a(n) = ([0==n mod 2]*2*C(3n/2,n) + [1==n mod 2]*3*C((3n-1)/2,n) + [1==n mod4]*3*C((3n-3)/4,(n-1)/2) + [2==n mod6]*3*C(n/2-1,(n-2)/3)) / (3n+3).
a(n) = 2*A027610(n) - A007173(n) = A007173(n) - 2*A371350(n) = A027610(n) - A371350(n).
a(n) = 2*H(3,n) - h(3,n) in Table 8 of Hering link.
G.f.: (-4 + 4*G(z^2) + 3z*G(z^2)^2 + 3z*G(z^4) + 2z^2*G(z^6)) / 6, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764.