cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371363 Expansion of (1/x) * Series_Reversion( x * (1-3*x)^3 / (1-2*x) ).

Original entry on oeis.org

1, 7, 85, 1261, 20788, 365845, 6731758, 127938625, 2491921516, 49480794460, 997897366717, 20384025765619, 420869454302620, 8769197604091246, 184151509243984300, 3893585866824069577, 82817275938125471548, 1770880435886367151060
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-3*x)^3/(1-2*x))/x)
    
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(3*n+k+2, k)*binomial(3*n+1, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^(n-k) * binomial(3*n+k+2,k) * binomial(3*n+1,n-k).

A371380 Expansion of (1/x) * Series_Reversion( x * (1-3*x)^2 / (1-x) ).

Original entry on oeis.org

1, 5, 46, 521, 6574, 88658, 1250920, 18236849, 272544886, 4153080950, 64284022516, 1007929418570, 15974993572732, 255522850658564, 4119461259700060, 66869059171095809, 1091990982773631910, 17927521032225339854, 295717190725184361364, 4898634803627227516238
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-3*x)^2/(1-x))/x)
    
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(2*n+k+1, k)*binomial(2*n, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^k * binomial(2*n+k+1,k) * binomial(2*n,n-k).
Showing 1-2 of 2 results.