cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A372018 G.f. A(x) satisfies A(x) = ( 1 + 4*x*A(x)/(1 - x*A(x)) )^(1/2).

Original entry on oeis.org

1, 2, 4, 10, 30, 98, 336, 1194, 4360, 16258, 61644, 236938, 921102, 3615330, 14307312, 57024426, 228701646, 922283522, 3737497980, 15212318730, 62160993642, 254909413218, 1048717979424, 4327273358250, 17903826642780, 74260741616514, 308724721176676
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2024

Keywords

Crossrefs

Programs

  • Maple
    A372018 := proc(n)
        add(4^k*binomial((n+1)/2,k)*binomial(n-1,k-1),k=0..n) ;
        %/(n+1) ;
    end proc:
    seq(A372018(n),n=0..60) ; # R. J. Mathar, Apr 22 2024
  • PARI
    a(n) = sum(k=0, n, 4^k*binomial(n/2+1/2, k)*binomial(n-1, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 4^k * binomial(n/2+1/2,k) * binomial(n-1,n-k).
D-finite with recurrence n*(n+1)*(n-2)*a(n) -6*(n-2)*(3*n^2-6*n+1)*a(n-2) -27*n*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Apr 22 2024
Conjecture: a(2n+1) = 2*A371364(). - R. J. Mathar, Apr 22 2024

A371365 Expansion of (1/x) * Series_Reversion( x * (1-4*x)^3 / (1-3*x) ).

Original entry on oeis.org

1, 9, 141, 2701, 57513, 1307553, 31083925, 763267077, 19208408721, 492817411705, 12842067417309, 338956669920189, 9042967461581753, 243464712274093713, 6606427290991922277, 180492205687604057013, 4960765361688213527073
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-4*x)^3/(1-3*x))/x)
    
  • PARI
    a(n) = sum(k=0, n, 3^(n-k)*binomial(3*n+k+2, k)*binomial(3*n+1, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 3^(n-k) * binomial(3*n+k+2,k) * binomial(3*n+1,n-k).

A371386 Expansion of (1/x) * Series_Reversion( x * (1-4*x)^2 / (1-x) ).

Original entry on oeis.org

1, 7, 89, 1391, 24209, 450231, 8759337, 176071263, 3627907745, 76217773799, 1626477863801, 35158334302927, 768222871584817, 16940297062253719, 376507441510456905, 8425543117906277055, 189683436162271517505, 4293057440192560395207
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-4*x)^2/(1-x))/x)
    
  • PARI
    a(n) = sum(k=0, n, 3^k*binomial(2*n+k+1, k)*binomial(2*n, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 3^k * binomial(2*n+k+1,k) * binomial(2*n,n-k).
Showing 1-3 of 3 results.