A371411 Number of Dyck paths of semilength 2n having exactly n (possibly overlapping) occurrences of the consecutive step pattern UDU, where U = (1,1) and D = (1,-1).
1, 1, 3, 20, 140, 1134, 9702, 87516, 817245, 7852130, 77135630, 771742608, 7839348244, 80661853300, 839138980500, 8813312133840, 93339369441540, 995827949882370, 10694044148599350, 115515073043785800, 1254354063204682440, 13685749828961247180
Offset: 0
Keywords
Examples
a(1) = 1: UDUD. a(2) = 3: UDUDUUDD, UDUUDUDD, UUDUDUDD. a(3) = 20: UDUDUDUUDDUD, UDUDUDUUUDDD, UDUDUUDDUDUD, UDUDUUDUDDUD, UDUDUUDUUDDD, UDUDUUUDUDDD, UDUUDDUDUDUD, UDUUDUDDUDUD, UDUUDUDUDDUD, UDUUDUDUUDDD, UDUUDUUDUDDD, UDUUUDUDUDDD, UUDDUDUDUDUD, UUDUDDUDUDUD, UUDUDUDDUDUD, UUDUDUDUDDUD, UUDUDUDUUDDD, UUDUDUUDUDDD, UUDUUDUDUDDD, UUUDUDUDUDDD. a(4) = 140: UDUDUDUDUUDDUUDD, UDUDUDUDUUUDDDUD, UDUDUDUDUUUDDUDD, ..., UUUDUDUUDUDUDDDD, UUUDUUDUDUDUDDDD, UUUUDUDUDUDUDDDD.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..932
- Wikipedia, Counting lattice paths
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 1, (2*(n-1)*(2*n-1)^2* a(n-1)+12*(n-2)*(2*n-1)*(2*n-3)*a(n-2))/((n+1)*n*(n-1))) end: seq(a(n), n=0..21);