cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371418 The largest aliquot divisor of the sum of divisors of n; a(1) = 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 4, 5, 1, 9, 6, 14, 7, 12, 12, 1, 9, 13, 10, 21, 16, 18, 12, 30, 1, 21, 20, 28, 15, 36, 16, 21, 24, 27, 24, 13, 19, 30, 28, 45, 21, 48, 22, 42, 39, 36, 24, 62, 19, 31, 36, 49, 27, 60, 36, 60, 40, 45, 30, 84, 31, 48, 52, 1, 42, 72, 34, 63, 48, 72
Offset: 1

Views

Author

Amiram Eldar, Mar 23 2024

Keywords

Comments

Carmichael (1921) defined this arithmetic function for the purpose of studying periodic chains that are formed by repeatedly applying the mapping x -> a(x) starting at a given positive integer. This results in a sequence that is analogous to an aliquot sequence.
Periodic chains of cycle 1 are the fixed points of this sequence. 1 and the even perfect numbers (the even terms of A000396) are fixed points. Are there any other numbers k such that a(k) = k?
If a(k) = k and k is even, then a(k) is even and so is sigma(k), and therefore sigma(k) = 2*k and k is an even perfect number. If k is odd, then it is an odd multiperfect number, and no odd multiperfect number above 1 is known.
More specifically, if a(k) = k and k is odd, then k must be a square, and an m-multiperfect number (number k such that sigma(k) = m * k), with m being an odd prime number that is the least prime factor of sigma(k). For example, if there is an odd triperfect number (A005820) then it is a fixed point of this sequence.
Periodic chains of cycle 2 are amicable pairs (A371419 and A371420). Are there any longer cycles?

Examples

			The sum of the divisors of 3 is 1 + 3 = 4. The divisors of 4 are 1, 2, 4. 2 is the largest aliquot divisor of 4. Therefore a(3) = 2.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := n/FactorInteger[n][[1, 1]]; a[n_] := r[DivisorSigma[1, n]]; Array[a, 100]
  • PARI
    a(n) = {my(s = sigma(n)); if(s == 1, 1, s/factor(s)[1, 1]);}

Formula

a(n) = A032742(A000203(n)).
a(n) = A000203(n)/A071189(n).
a(n) = A000203(n)/2 if n is in A028983 (i.e., n is not in A028982).
a(k) = 1 if and only if k = 1 or k is in A023194.

A371419 Lesser member of Carmichael's variant of amicable pair: numbers k < m such that s(k) = m and s(m) = k, where s(k) = A371418(k).

Original entry on oeis.org

12, 48, 112, 160, 192, 448, 1984, 12288, 28672, 126976, 196608, 458752, 520192, 786432, 1835008, 2031616, 8126464, 8323072, 33292288, 536805376, 2147221504, 3221225472, 7516192768, 33285996544, 34359476224, 136365211648
Offset: 1

Views

Author

Amiram Eldar, Mar 23 2024

Keywords

Comments

Analogous to amicable numbers (A002025 and A002046) with the largest aliquot divisor of the sum of divisors (A371418) instead of the sum of aliquot divisors (A001065).
Carmichael (1921) proposed this function (A371418) for the purpose of studying periodic chains that are formed by repeatedly applying the mapping x -> A371418(x). The chains of cycle 2 are analogous to amicable numbers.
Carmichael noted that if q < p are two different Mersenne exponents (A000043), then 2^(p-1)*(2^q-1) and 2^(q-1)*(2^p-1) are an amicable pair. With the 51 Mersenne exponents that are currently known it is possible to calculate 51 * 50 / 2 = 1275 amicable pairs. (160, 189) is a pair that is not of this "Mersenne form". Are there any other pairs like it? There are no other such pairs with lesser member below a(26).
a(27) <= 8795019280384.
The greater counterparts are in A371420.

Examples

			12 is a term since A371418(12) = 14 > 12, and A371418(14) = 12.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := n/FactorInteger[n][[1, 1]]; s[n_] := r[DivisorSigma[1, n]]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 1, 10^6}]; seq
  • PARI
    f(n) = {my(s = sigma(n)); if(s == 1, 1, s/factor(s)[1, 1]);}
    lista(nmax) = {my(m); for(n = 1, nmax, m = f(n); if(m > n && f(m) == n, print1(n, ", ")));}
Showing 1-2 of 2 results.