A371443 Numbers whose binary indices are nonprime numbers.
1, 8, 9, 32, 33, 40, 41, 128, 129, 136, 137, 160, 161, 168, 169, 256, 257, 264, 265, 288, 289, 296, 297, 384, 385, 392, 393, 416, 417, 424, 425, 512, 513, 520, 521, 544, 545, 552, 553, 640, 641, 648, 649, 672, 673, 680, 681, 768, 769, 776, 777, 800, 801, 808
Offset: 1
Keywords
Examples
The terms together with their binary expansions and binary indices begin: 1: 1 ~ {1} 8: 1000 ~ {4} 9: 1001 ~ {1,4} 32: 100000 ~ {6} 33: 100001 ~ {1,6} 40: 101000 ~ {4,6} 41: 101001 ~ {1,4,6} 128: 10000000 ~ {8} 129: 10000001 ~ {1,8} 136: 10001000 ~ {4,8} 137: 10001001 ~ {1,4,8} 160: 10100000 ~ {6,8} 161: 10100001 ~ {1,6,8} 168: 10101000 ~ {4,6,8} 169: 10101001 ~ {1,4,6,8} 256: 100000000 ~ {9} 257: 100000001 ~ {1,9} 264: 100001000 ~ {4,9} 265: 100001001 ~ {1,4,9} 288: 100100000 ~ {6,9} 289: 100100001 ~ {1,6,9} 296: 100101000 ~ {4,6,9}
Crossrefs
For powers of 2 instead of nonprime numbers we have A253317.
For prime indices instead of binary indices we have A320628.
For prime instead of nonprime we have A326782.
For composite numbers we have A371444.
An opposite version is A371449.
A000961 lists prime-powers.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[100],And@@Not/@PrimeQ/@bpe[#]&]
Comments