A371444 Numbers whose binary indices are composite numbers.
8, 32, 40, 128, 136, 160, 168, 256, 264, 288, 296, 384, 392, 416, 424, 512, 520, 544, 552, 640, 648, 672, 680, 768, 776, 800, 808, 896, 904, 928, 936, 2048, 2056, 2080, 2088, 2176, 2184, 2208, 2216, 2304, 2312, 2336, 2344, 2432, 2440, 2464, 2472, 2560, 2568
Offset: 1
Keywords
Examples
The terms together with their binary expansions and binary indices begin: 8: 1000 ~ {4} 32: 100000 ~ {6} 40: 101000 ~ {4,6} 128: 10000000 ~ {8} 136: 10001000 ~ {4,8} 160: 10100000 ~ {6,8} 168: 10101000 ~ {4,6,8} 256: 100000000 ~ {9} 264: 100001000 ~ {4,9} 288: 100100000 ~ {6,9} 296: 100101000 ~ {4,6,9} 384: 110000000 ~ {8,9} 392: 110001000 ~ {4,8,9} 416: 110100000 ~ {6,8,9} 424: 110101000 ~ {4,6,8,9} 512: 1000000000 ~ {10} 520: 1000001000 ~ {4,10} 544: 1000100000 ~ {6,10} 552: 1000101000 ~ {4,6,10} 640: 1010000000 ~ {8,10} 648: 1010001000 ~ {4,8,10} 672: 1010100000 ~ {6,8,10}
Crossrefs
For powers of 2 instead of composite numbers we have A253317.
For prime indices we have the even case of A320628.
For prime instead of composite we have A326782.
This is the even case of A371444.
An opposite version is A371449.
A000961 lists prime-powers.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[100],EvenQ[#]&&And@@Not/@PrimeQ/@bpe[#]&]
Comments