A371446 Number of carry-connected integer partitions whose distinct parts have no binary containments.
1, 1, 2, 2, 3, 2, 4, 2, 5, 4, 4, 4, 8, 4, 7, 7, 12, 10, 14, 12, 15, 19, 19, 21, 32, 27, 33, 40, 46, 47, 61, 52, 75, 89, 95, 104, 129, 129, 149, 176, 188, 208, 249, 257, 296, 341, 373, 394, 476, 496, 552
Offset: 0
Examples
The a(12) = 8 through a(14) = 7 partitions: (12) (13) (14) (6,6) (10,3) (7,7) (9,3) (5,5,3) (9,5) (4,4,4) (1,1,1,1,1,1,1,1,1,1,1,1,1) (6,5,3) (6,3,3) (5,3,3,3) (3,3,3,3) (2,2,2,2,2,2,2) (2,2,2,2,2,2) (1,1,1,1,1,1,1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,1,1,1,1,1)
Crossrefs
Programs
-
Mathematica
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Select[IntegerPartitions[n], stableQ[bix/@Union[#],SubsetQ]&&Length[csm[bix/@#]]<=1&]],{n,0,30}]
Comments