A371291
Numbers whose binary indices are connected, where two numbers are connected iff they have a common factor.
Original entry on oeis.org
1, 2, 4, 8, 10, 16, 32, 34, 36, 38, 40, 42, 44, 46, 64, 128, 130, 136, 138, 160, 162, 164, 166, 168, 170, 172, 174, 256, 260, 288, 290, 292, 294, 296, 298, 300, 302, 416, 418, 420, 422, 424, 426, 428, 430, 512, 514, 520, 522, 528, 530, 536, 538, 544, 546, 548
Offset: 1
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
2: 10 ~ {2}
4: 100 ~ {3}
8: 1000 ~ {4}
10: 1010 ~ {2,4}
16: 10000 ~ {5}
32: 100000 ~ {6}
34: 100010 ~ {2,6}
36: 100100 ~ {3,6}
38: 100110 ~ {2,3,6}
40: 101000 ~ {4,6}
42: 101010 ~ {2,4,6}
44: 101100 ~ {3,4,6}
46: 101110 ~ {2,3,4,6}
64: 1000000 ~ {7}
128: 10000000 ~ {8}
130: 10000010 ~ {2,8}
136: 10001000 ~ {4,8}
138: 10001010 ~ {2,4,8}
160: 10100000 ~ {6,8}
162: 10100010 ~ {2,6,8}
164: 10100100 ~ {3,6,8}
For prime indices of each prime index we have
A305078.
For binary indices of each binary index we have
A326749.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A070939 gives length of binary expansion.
A087086 lists numbers whose binary indices are pairwise indivisible.
A096111 gives product of binary indices.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,1000],Length[csm[prix/@bpe[#]]]==1&]
A371294
Numbers whose binary indices are connected and pairwise indivisible, where two numbers are connected iff they have a common factor. A hybrid ranking sequence for connected antichains of multisets.
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 40, 64, 128, 160, 256, 288, 296, 416, 512, 520, 544, 552, 640, 672, 800, 808, 928, 1024, 2048, 2176, 2304, 2432, 2560, 2688, 2816, 2944, 4096, 8192, 8200, 8224, 8232, 8320, 8352, 8480, 8488, 8608, 8704, 8712, 8736, 8744, 8832, 8864, 8992
Offset: 1
The terms together with their prime indices of binary indices begin:
1: {{}}
2: {{1}}
4: {{2}}
8: {{1,1}}
16: {{3}}
32: {{1,2}}
40: {{1,1},{1,2}}
64: {{4}}
128: {{1,1,1}}
160: {{1,2},{1,1,1}}
256: {{2,2}}
288: {{1,2},{2,2}}
296: {{1,1},{1,2},{2,2}}
416: {{1,2},{1,1,1},{2,2}}
512: {{1,3}}
520: {{1,1},{1,3}}
544: {{1,2},{1,3}}
552: {{1,1},{1,2},{1,3}}
640: {{1,1,1},{1,3}}
672: {{1,2},{1,1,1},{1,3}}
800: {{1,2},{2,2},{1,3}}
808: {{1,1},{1,2},{2,2},{1,3}}
928: {{1,2},{1,1,1},{2,2},{1,3}}
For binary indices of binary indices we have
A326750, non-primitive
A326749.
For prime indices of prime indices we have
A329559, non-primitive
A305078.
For binary indices of prime indices we have
A371445, non-primitive
A325118.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf.
A001222,
A051026,
A285572,
A303362,
A304713,
A305079,
A316476,
A319496,
A319719,
A326704,
A371446.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],stableQ[bpe[#],Divisible]&&connectedQ[prix/@bpe[#]]&]
A371445
Numbers whose distinct prime indices are binary carry-connected and have no binary containments.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 55, 59, 61, 64, 65, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 131, 137, 139, 143, 145, 149, 151, 157, 163, 167, 169, 173, 179, 181
Offset: 1
The terms together with their prime indices begin:
2: {1} 37: {12} 97: {25}
3: {2} 41: {13} 101: {26}
4: {1,1} 43: {14} 103: {27}
5: {3} 47: {15} 107: {28}
7: {4} 49: {4,4} 109: {29}
8: {1,1,1} 53: {16} 113: {30}
9: {2,2} 55: {3,5} 115: {3,9}
11: {5} 59: {17} 121: {5,5}
13: {6} 61: {18} 125: {3,3,3}
16: {1,1,1,1} 64: {1,1,1,1,1,1} 127: {31}
17: {7} 65: {3,6} 128: {1,1,1,1,1,1,1}
19: {8} 67: {19} 131: {32}
23: {9} 71: {20} 137: {33}
25: {3,3} 73: {21} 139: {34}
27: {2,2,2} 79: {22} 143: {5,6}
29: {10} 81: {2,2,2,2} 145: {3,10}
31: {11} 83: {23} 149: {35}
32: {1,1,1,1,1} 89: {24} 151: {36}
Contains all powers of primes
A000961 except 1.
Partitions of this type are counted by
A371446.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A070939 gives length of binary expansion.
Cf.
A019565,
A056239,
A112798,
A304713,
A304716,
A305079,
A305148,
A325097,
A325105,
A325107,
A325119,
A371452.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Select[Range[100],stableQ[bpe/@prix[#],SubsetQ] && Length[csm[bpe/@prix[#]]]==1&]
A371289
Numbers whose binary indices have squarefree product.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 48, 49, 64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 82, 83, 84, 85, 86, 87, 96, 97, 112, 113, 512, 513, 516, 517, 576, 577, 580, 581, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1040, 1041, 1042
Offset: 1
The terms together with their binary expansions and binary indices begin:
0: 0 ~ {}
1: 1 ~ {1}
2: 10 ~ {2}
3: 11 ~ {1,2}
4: 100 ~ {3}
5: 101 ~ {1,3}
6: 110 ~ {2,3}
7: 111 ~ {1,2,3}
16: 10000 ~ {5}
17: 10001 ~ {1,5}
18: 10010 ~ {2,5}
19: 10011 ~ {1,2,5}
20: 10100 ~ {3,5}
21: 10101 ~ {1,3,5}
22: 10110 ~ {2,3,5}
23: 10111 ~ {1,2,3,5}
32: 100000 ~ {6}
33: 100001 ~ {1,6}
48: 110000 ~ {5,6}
49: 110001 ~ {1,5,6}
64: 1000000 ~ {7}
65: 1000001 ~ {1,7}
66: 1000010 ~ {2,7}
For prime instead of binary indices we have
A302505.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf.
A325118,
A326782,
A371290,
A371291,
A371292,
A371293,
A371443,
A371446,
A371448,
A371449,
A371452,
A371453.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,100],SquareFreeQ[Times@@bpe[#]]&]
A371455
Numbers k such that if we take the binary indices of each prime index of k we get an antichain of sets.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 38, 41, 42, 43, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 64, 65, 67, 69, 71, 72, 73, 74, 76, 79, 81, 83, 84, 86, 89, 95, 96, 97, 98, 99
Offset: 1
The prime indices of 65 are {3,6} with binary indices {{1,2},{2,3}} so 65 is in the sequence.
The prime indices of 255 are {2,3,7} with binary indices {{2},{1,2},{1,2,3}} so 255 is not in the sequence.
Contains all powers of primes
A000961.
For prime indices of prime indices we have
A316476, carry-connected
A329559.
These antichains are counted by
A325109.
For binary indices of binary indices we have
A326704, carry-conn.
A326750.
A048143 counts connected antichains of sets.
A050320 counts set multipartitions of prime indices, see also
A318360.
A070939 gives length of binary expansion.
A089259 counts set multipartitions of integer partitions.
A116540 counts normal set multipartitions.
A371451 counts carry-connected components of binary indices.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],stableQ[bix/@prix[#],SubsetQ]&]
Showing 1-5 of 5 results.
Comments