A371453 Numbers whose binary indices are all squarefree semiprimes.
32, 512, 544, 8192, 8224, 8704, 8736, 16384, 16416, 16896, 16928, 24576, 24608, 25088, 25120, 1048576, 1048608, 1049088, 1049120, 1056768, 1056800, 1057280, 1057312, 1064960, 1064992, 1065472, 1065504, 1073152, 1073184, 1073664, 1073696, 2097152, 2097184
Offset: 1
Examples
The terms together with their binary expansions and binary indices begin: 32: 100000 ~ {6} 512: 1000000000 ~ {10} 544: 1000100000 ~ {6,10} 8192: 10000000000000 ~ {14} 8224: 10000000100000 ~ {6,14} 8704: 10001000000000 ~ {10,14} 8736: 10001000100000 ~ {6,10,14} 16384: 100000000000000 ~ {15} 16416: 100000000100000 ~ {6,15} 16896: 100001000000000 ~ {10,15} 16928: 100001000100000 ~ {6,10,15} 24576: 110000000000000 ~ {14,15} 24608: 110000000100000 ~ {6,14,15} 25088: 110001000000000 ~ {10,14,15} 25120: 110001000100000 ~ {6,10,14,15} 1048576: 100000000000000000000 ~ {21}
Crossrefs
Programs
-
Maple
M:= 26: # for terms < 2^M P:= select(isprime, [$2..(M+1)/2]): nP:= nops(P): S:= select(`<`,{seq(seq(P[i]*P[j],i=1..j-1),j=1..nP)},M+1): R:= map(proc(s) local i; add(2^(i-1),i=s) end proc, combinat:-powerset(S) minus {{}}): sort(convert(R,list)); # Robert Israel, Apr 04 2024
-
Mathematica
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; sqfsemi[n_]:=SquareFreeQ[n]&&PrimeOmega[n]==2; Select[Range[10000],And@@sqfsemi/@bix[#]&]
-
Python
def A371453(n): return sum(1<<A006881(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1')
-
Python
from math import isqrt from sympy import primepi, primerange def A371453(n): def f(x,n): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1))) def A006881(n): m, k = n, f(n,n) while m != k: m, k = k, f(k,n) return m return sum(1<<A006881(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1') # Chai Wah Wu, Aug 16 2024
Comments