A371464 Numbers such that the arithmetic mean of its digits is equal to three times the population standard deviation of its digits.
0, 12, 21, 24, 36, 42, 48, 63, 84, 1122, 1212, 1221, 2112, 2121, 2211, 2244, 2424, 2442, 2556, 2565, 2655, 3366, 3447, 3474, 3636, 3663, 3744, 4224, 4242, 4347, 4374, 4422, 4437, 4473, 4488, 4734, 4743, 4848, 4884, 5256, 5265, 5526, 5562, 5625, 5652, 6255, 6336, 6363
Offset: 1
Examples
2244 is a term since the mean of the digits is (2 + 2 + 4 + 4)/4 = 3 and the standard deviation of the digits is sqrt(((2-3)^2 + (2-3)^2 + (4-3)^2 + (4-3)^2)/4) = 1.
Links
- Wikipedia, Coefficient of variation.
- Wikipedia, Standard deviation.
Programs
-
Mathematica
DigStd[n_]:=If[n==0||IntegerLength[n]==1, 0, Sqrt[(IntegerLength[n]-1)/IntegerLength[n]]StandardDeviation[IntegerDigits[n]]]; Select[Range[0, 6400], Mean[IntegerDigits[#]]==3DigStd[#]&]
-
Python
from itertools import count, islice def A371464_gen(startvalue=0): # generator of terms >= startvalue return filter(lambda n:10*sum(s:=tuple(map(int,str(n))))**2 == 9*len(s)*sum(d**2 for d in s), count(max(startvalue,0))) A371464_list = list(islice(A371464_gen(),20)) # Chai Wah Wu, Mar 30 2024
Comments