A371525 Decimal expansion of Product_{k>=1} (1 + 1/Lucas(k)).
4, 7, 9, 6, 2, 8, 8, 5, 2, 3, 1, 8, 8, 3, 8, 5, 4, 6, 3, 8, 1, 0, 3, 7, 0, 1, 4, 0, 7, 5, 1, 2, 1, 5, 8, 4, 9, 8, 1, 9, 5, 1, 6, 3, 0, 8, 0, 9, 2, 3, 4, 7, 7, 4, 1, 8, 3, 7, 3, 9, 5, 7, 2, 2, 0, 5, 7, 8, 3, 4, 2, 6, 1, 6, 7, 9, 3, 5, 0, 8, 9, 5, 4, 9, 8, 5, 7, 6, 6, 1, 0, 8, 0, 0, 6, 2, 8, 3, 1, 2, 5, 4, 6, 6, 6
Offset: 1
Examples
4.79628852318838546381037014075121584981951630809234...
Links
- Daniel Duverney, Carsten Elsner, Masanobu Kaneko, and Yohei Tachiya, A criterion of algebraic independence of values of modular functions and an application to infinite products involving Fibonacci and Lucas numbers, Research in Number Theory, Vol. 8 (2022), Article 31; alternative link.
- Eric Weisstein's World of Mathematics, Dedekind Eta Function.
- Wikipedia, Dedekind eta function.
Crossrefs
Programs
-
Mathematica
With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[2 * Surd[GoldenRatio, 4] * eta[2*tau0]^3 * eta[3*tau0]/(eta[tau0]^2 * eta[4*tau0]), 10, 120][[1]]]
-
PARI
prodinf(k = 1, 1 + 1/(fibonacci(k-1) + fibonacci(k+1)))
Comments