A371528 Decimal expansion of Product_{k>=3} (1 - (-1)^k/Fibonacci(k)).
1, 0, 9, 5, 9, 1, 3, 8, 8, 8, 1, 4, 8, 6, 8, 2, 0, 3, 0, 6, 3, 4, 3, 6, 9, 4, 4, 7, 5, 5, 2, 2, 2, 1, 5, 7, 7, 6, 8, 2, 5, 1, 6, 6, 2, 8, 5, 9, 7, 0, 2, 3, 7, 2, 5, 1, 1, 2, 8, 4, 1, 7, 2, 8, 9, 2, 9, 8, 0, 8, 1, 7, 0, 5, 0, 2, 3, 0, 0, 9, 8, 4, 0, 9, 3, 1, 8, 6, 8, 0, 2, 4, 8, 6, 1, 0, 9, 3, 3, 6, 2, 6, 7, 8, 1
Offset: 1
Examples
1.09591388814868203063436944755222157768251662859702...
Links
- Daniel Duverney, Carsten Elsner, Masanobu Kaneko, and Yohei Tachiya, A criterion of algebraic independence of values of modular functions and an application to infinite products involving Fibonacci and Lucas numbers, Research in Number Theory, Vol. 8 (2022), Article 31; alternative link.
- Eric Weisstein's World of Mathematics, Dedekind Eta Function.
- Wikipedia, Dedekind eta function.
Crossrefs
Programs
-
Mathematica
With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[(Surd[GoldenRatio^5, 4] / 3) * eta[4*tau0]/eta[tau0], 10, 120][[1]]]
-
PARI
prodinf(k = 3, 1 - (-1)^k/fibonacci(k))