A371569 Primes p such that for all initial conditions (x(0),x(1),x(2),x(3),x(4)) in [0..p-1]^5 except [0,0,0,0,0], the 5-step recurrence x(k) = x(k-1) + x(k-2) + x(k-3) + x(k-4) + x(k-5) (mod p) has the same period, but x^5 - x^4 - x^3 - x^2 - x - 1 is reducible (mod p).
4259, 61643, 94307, 110063, 118171, 348149, 1037903, 1872587, 2149403, 2331859, 2450807, 2490263, 2500847, 2521823, 2534659, 2772179, 2788367, 2789939, 3271883, 3399707, 3550751, 3577487, 3640859, 3861899, 3904309, 4016219, 4063211, 4236719, 4245239, 4368739, 4441007, 4542779, 5033477, 5446283
Offset: 1
Keywords
Examples
a(3) = 94307 is a term because 94307 is prime, z^5 - z^4 - z^3 - z^2 - z - 1 = (z + 11827)*(z + 78583)*(z + 54610)*(z + 14536)*(z + 29057) (mod 94307), and the recurrence has period 47153 for all initial conditions except (0,0,0,0,0), as -11827, -78583, -54610, -14536, and -29057 all have multiplicative order 47153 (mod 94307).
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
- Robert Israel, Linear Recurrences with a Single Minimal Period
Programs
-
Maple
filter:= proc(p) local Q, q, F, i, z, d, k, kp, G, alpha; if not isprime(p) then return false fi; Q:= z^5 - z^4 - z^3 - z^2 - z - 1; if Irreduc(Q) mod p then return false fi; F:= (Factors(Q) mod p)[2]; if ormap(t -> t[2]>1, F) then return false fi; for i from 1 to nops(F) do q:= F[i][1]; d:= degree(q); if d = 1 then kp:= NumberTheory:-MultiplicativeOrder(p+solve(q, z), p); else G:= GF(p, d, q); alpha:= G:-ConvertIn(z); kp:= G:-order(alpha); fi; if i = 1 then k:= kp elif kp <> k then return false fi; od; true end proc: select(filter, [seq(i, i=3 .. 10^7,2)]);
Comments