A371595 a(n) is the least period of the 5-step recurrence x(k) = (x(k-1) + x(k-2) + x(k-3) + x(k-4) + x(k-5)) mod prime(n) for initial conditions (x(0),x(1),x(2),x(3),x(4)) other than (0,0,0,0,0) in [0..prime(n)-1]^5.
1, 8, 781, 2801, 16105, 30941, 88741, 9, 22, 14, 190861, 1926221, 2896405, 7, 23, 8042221, 29, 10, 66, 560, 18, 39449441, 6888, 88, 32, 100, 34, 132316201, 108, 16, 42, 26, 68, 46, 74, 7600, 4108, 81, 83, 43, 178, 45, 190, 32, 98, 1576159601, 70, 37, 226, 13110, 2959999381, 3276517921, 29040
Offset: 1
Examples
a(8) = 9 because prime(3) = 5 and the recurrence has minimal period 9; e.g., with initial values 4, 7, 11, 6, 1 it continues 16, 9, 11, 5, 4, 7, 17, 6, 1, ...
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Robert Israel, Minimal Period of Linear Recurrences.
Crossrefs
Cf. A106309.
Programs
-
Maple
minperiod:= proc(p) local Q, q, F, i, z, d, k, kp, G, alpha; Q:= z^5 - z^4 - z^3 - z^2 - z - 1; F:= (Factors(Q) mod p)[2]; k:= infinity; for i from 1 to nops(F) do q:= F[i][1]; d:= degree(q); if d = 1 then kp:= NumberTheory:-MultiplicativeOrder(p+solve(q, z), p); else G:= GF(p, d, q); alpha:= G:-ConvertIn(z); kp:= G:-order(alpha); fi; k:= min(k,kp); od; k; end proc: map(minperiod, [seq(ithprime(i),i=1..100)]);
Comments