cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371598 a(n) = (Product_{i=1..n} Fibonacci(i)) mod Fibonacci(n + 1).

Original entry on oeis.org

0, 1, 2, 1, 6, 6, 12, 2, 15, 16, 0, 49, 299, 220, 882, 252, 2176, 166, 495, 5720, 5251, 6065, 28224, 41650, 106947, 113288, 256737, 173841, 26840, 25379, 444150, 347278, 1834953, 8709610, 4046544, 2653673, 31127545, 47532000, 50717205, 147239197, 97769672, 37543458
Offset: 1

Views

Author

Adnan Baysal, Mar 29 2024

Keywords

Examples

			a(1) = 0 since A000045(1) = A000045(2) = 1 and 1 mod 1 = 0.
a(2) = (1 * 1) mod 2 = 1.
a(3) = (1 * 1 * 2) mod 3 = 2.
a(4) = (1 * 1 * 2 * 3) mod 5 = 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[Fibonorial[n], Fibonacci[n + 1]]; Array[a, 50] (* Amiram Eldar, Mar 29 2024 *)
  • PARI
    a(n) = my(f=fibonacci(n+1)); lift(prod(k=1, n, Mod(fibonacci(k), f))); \\ Michel Marcus, Apr 03 2024
  • Python
    from sympy import fibonacci
    def a(n):
        a_n = 1
        mod = fibonacci(n + 1)
        for i in range(1, n + 1):
            a_n = (a_n * fibonacci(i)) % mod
        return a_n
    

Formula

a(n) = A003266(n) mod A000045(n+1).