cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A371613 G.f. satisfies A(x) = ( 1 + x / (1 - x*A(x)^3) )^2.

Original entry on oeis.org

1, 2, 3, 16, 83, 460, 2767, 17210, 110308, 723624, 4832363, 32747106, 224619408, 1556484636, 10879744696, 76621739626, 543159825499, 3872610857558, 27752175177823, 199787917082084, 1444171829169939, 10477887409768628, 76275565075016394
Offset: 0

Views

Author

Seiichi Manyama, Mar 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=0, u=6) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = Sum_{k=0..n} binomial(6*(n-k)+2,k) * binomial(n-1,n-k)/(3*(n-k)+1).

A371617 G.f. satisfies A(x) = ( 1 + x / (1 - x*A(x)^3)^3 )^2.

Original entry on oeis.org

1, 2, 7, 54, 419, 3644, 33366, 317672, 3113559, 31200060, 318219653, 3292546660, 34475311605, 364621943538, 3889561661610, 41799988930926, 452126713579192, 4918321519144206, 53773399008883695, 590578523863692086, 6512515698908748358
Offset: 0

Views

Author

Seiichi Manyama, Mar 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=3, t=0, u=6) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = Sum_{k=0..n} binomial(6*(n-k)+2,k) * binomial(n+2*k-1,n-k)/(3*(n-k)+1).

A371614 G.f. satisfies A(x) = ( 1 + x / (1 - x*A(x)^2)^2 )^2.

Original entry on oeis.org

1, 2, 5, 26, 138, 814, 5051, 32550, 215792, 1461934, 10077345, 70450980, 498328320, 3559894566, 25646621725, 186122575840, 1359384244220, 9984580141702, 73703387448245, 546492958156148, 4068417329371228, 30397841636794944, 227872480308702892
Offset: 0

Views

Author

Seiichi Manyama, Mar 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=2, t=0, u=4) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = Sum_{k=0..n} binomial(4*(n-k)+2,k) * binomial(n+k-1,n-k)/(2*(n-k)+1).

A371610 G.f. satisfies A(x) = ( 1 + x * (1 + x*A(x)^3)^2 )^2.

Original entry on oeis.org

1, 2, 5, 30, 162, 996, 6449, 43086, 296750, 2086244, 14920110, 108202326, 793793106, 5880645408, 43931188235, 330570658228, 2503247547204, 19061888196960, 145874708874538, 1121290880430144, 8653411948545596, 67022656919955620, 520808586384360885
Offset: 0

Views

Author

Seiichi Manyama, Mar 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=2, t=0, u=6) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = Sum_{k=0..n} binomial(6*(n-k)+2,k) * binomial(2*k,n-k)/(3*(n-k)+1).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A137967.
Showing 1-4 of 4 results.