A371651 a(n) is the first prime p such that p - 2 and p + 2 both have exactly n prime factors, counted with multiplicity.
5, 23, 173, 2693, 32587, 495637, 4447627, 35303123, 717591877, 928090627, 69692326373, 745041171877, 5012236328123, 64215009765623, 945336806640623, 8885812685546873
Offset: 1
Examples
a(3) = 173 because 173 is prime, 173 - 2 = 171 = 3^2 * 19 and 173 + 2 = 175 = 5^2 * 7 are both products of 3 primes with multiplicity, and no smaller number works.
Programs
-
Maple
V:= Vector(8): p:= 3: count:= 0: while count < 8 do p:= nextprime(p); i:= numtheory:-bigomega(p-2); if i <= 8 and V[i] = 0 and numtheory:-bigomega(p+2) = i then V[i]:= p; count:= count+1 fi od: convert(V,list);
-
PARI
generate(A, B, n) = A=max(A, 2^n); (f(m, p, j) = my(list=List()); if(j==1, forprime(q=max(p,ceil(A/m)), B\m, my(t=m*q); if(isprime(t-2) && bigomega(t-4) == n, listput(list, t-2))), forprime(q = p, sqrtnint(B\m, j), list=concat(list, f(m*q, q, j-1)))); list); vecsort(Vec(f(1, 3, n))); a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Apr 13 2024
-
Python
from sympy import primeomega, nextprime def A371651(n): p = 3 while True: if n == primeomega(p-2) == primeomega(p+2): return p p = nextprime(p) # Chai Wah Wu, Apr 02 2024
Formula
a(n) > 2*A154704(n) for n > 1.
Extensions
a(11) from Michael S. Branicky, Apr 01 2024
a(12) from Michael S. Branicky, Apr 02 2024
a(13) from Chai Wah Wu, Apr 04 2024
a(14)-a(16) from Daniel Suteu, Apr 13 2024
Comments