cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371629 If 2n = Sum 2^e(k) then a(n) = Sum e(k)^3.

Original entry on oeis.org

1, 8, 9, 27, 28, 35, 36, 64, 65, 72, 73, 91, 92, 99, 100, 125, 126, 133, 134, 152, 153, 160, 161, 189, 190, 197, 198, 216, 217, 224, 225, 216, 217, 224, 225, 243, 244, 251, 252, 280, 281, 288, 289, 307, 308, 315, 316, 341, 342, 349, 350, 368, 369, 376, 377, 405, 406, 413, 414, 432
Offset: 1

Views

Author

Ilya Gutkovskiy, May 24 2024

Keywords

Examples

			To get a(5), we write 10 = 2 + 8 = 2^1 + 2^3 so a(5) = 1^3 + 3^3 = 28.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Total[Flatten[Position[Reverse[IntegerDigits[n, 2]], 1]]^3]; Table[a[n], {n, 1, 60}]
    nmax = 60; CoefficientList[Series[(1/(1 - x)) Sum[(k + 1)^3 x^(2^k)/(1 + x^(2^k)), {k, 0, Log[2, nmax]}], {x, 0, nmax}], x] // Rest

Formula

G.f.: (1/(1 - x)) * Sum_{k>=0} (k+1)^3 * x^(2^k) / (1 + x^(2^k)).