A371640
a(n) = 3^(2*n + valuation(n, 3)) = 3^A371638(n).
Original entry on oeis.org
9, 81, 2187, 6561, 59049, 1594323, 4782969, 43046721, 3486784401, 3486784401, 31381059609, 847288609443, 2541865828329, 22876792454961, 617673396283947, 1853020188851841, 16677181699666569, 1350851717672992089, 1350851717672992089, 12157665459056928801, 328256967394537077627
Offset: 1
-
A371640 := n -> 3^(2*n + padic:-ordp(n, 3)):
seq(A371640(n), n = 1..21);
-
def A371640(n): return 3**(2*n + valuation(n, 3))
print([A371640(n) for n in range(1, 22)])
A371639
a(n) = numerator(Voronoi(3, 2*n)) where Voronoi(c, n) = ((c^n - 1) * Bernoulli(n)) / (n * c^(n - 1)).
Original entry on oeis.org
2, -2, 26, -82, 1342, -100886, 1195742, -57242642, 31945440878, -276741323122, 26497552755742, -9169807783193206, 418093081574417342, -66910282127782482482, 37158050152167281792026, -2626016090388858294953362, 632184834985453539204543742, -1543534415494449734887808117378
Offset: 1
r(n) = 2/9, -2/81, 26/2187, -82/6561, 1342/59049, -100886/1594323, ...
- Emma Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. Math. 39 (1938), 350-360.
- Štefan Porubský, Further Congruences Involving Bernoulli Numbers, Journal of Number Theory 16, 87-94 (1983).
- Georgy Feodosevich Voronyi, On Bernoulli numbers, Comm. Charkou Math. Sot. 2, 129-148 (1890) (in Russian).
-
Voronoi := (a, k) -> ((a^k - 1) * bernoulli(k)) / (k * a^(k - 1)):
VoronoiList := (a, len) -> local k; [seq(Voronoi(a, 2*k), k = 1..len)]:
numer(VoronoiList(3, 18));
Showing 1-2 of 2 results.
Comments