cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371638 a(n) = 2*n + valuation(n, 3) with valuation(n, 3) = A007949(n).

Original entry on oeis.org

2, 4, 7, 8, 10, 13, 14, 16, 20, 20, 22, 25, 26, 28, 31, 32, 34, 38, 38, 40, 43, 44, 46, 49, 50, 52, 57, 56, 58, 61, 62, 64, 67, 68, 70, 74, 74, 76, 79, 80, 82, 85, 86, 88, 92, 92, 94, 97, 98, 100, 103, 104, 106, 111, 110, 112, 115, 116, 118, 121, 122, 124, 128, 128
Offset: 1

Views

Author

Peter Luschny, Mar 30 2024

Keywords

Comments

See A371639 for the connection with Voronoi's congruence.

Crossrefs

Cf. A007949, A371639, A292608 (c=2).

Programs

  • Maple
    A371638 := n -> 2*n + padic:-ordp(n, 3): seq(A371638(n), n = 1..64);
  • Mathematica
    Array[2 # + IntegerExponent[#, 3] &, 64] (* Michael De Vlieger, Mar 31 2024 *)
  • SageMath
    def A371638(n): return 2 * n + valuation(n, 3)
    print([A371638(n) for n in range(1, 65)])

Formula

a(n) = valuation(denominator(Voronoi(3, n))) where Voronoi(c, n) = ((c^n - 1) * bernoulli(n)) / (n * c^(n - 1)).

A371640 a(n) = 3^(2*n + valuation(n, 3)) = 3^A371638(n).

Original entry on oeis.org

9, 81, 2187, 6561, 59049, 1594323, 4782969, 43046721, 3486784401, 3486784401, 31381059609, 847288609443, 2541865828329, 22876792454961, 617673396283947, 1853020188851841, 16677181699666569, 1350851717672992089, 1350851717672992089, 12157665459056928801, 328256967394537077627
Offset: 1

Views

Author

Peter Luschny, Mar 30 2024

Keywords

Comments

See A371639 for the connection with Voronoi's congruence.

Crossrefs

Cf. A371638, A371639 (numerator Voronoi).

Programs

  • Maple
    A371640 := n -> 3^(2*n + padic:-ordp(n, 3)):
    seq(A371640(n), n = 1..21);
  • SageMath
    def A371640(n): return 3**(2*n + valuation(n, 3))
    print([A371640(n) for n in range(1, 22)])

Formula

a(n) = denominator(Voronoi(3, 2*n)) where Voronoi(c, n) = ((c^n - 1)*Bernoulli(n)) / (n*c^(n - 1)).
Showing 1-2 of 2 results.