A371639 a(n) = numerator(Voronoi(3, 2*n)) where Voronoi(c, n) = ((c^n - 1) * Bernoulli(n)) / (n * c^(n - 1)).
2, -2, 26, -82, 1342, -100886, 1195742, -57242642, 31945440878, -276741323122, 26497552755742, -9169807783193206, 418093081574417342, -66910282127782482482, 37158050152167281792026, -2626016090388858294953362, 632184834985453539204543742, -1543534415494449734887808117378
Offset: 1
Examples
r(n) = 2/9, -2/81, 26/2187, -82/6561, 1342/59049, -100886/1594323, ...
References
- Emma Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. Math. 39 (1938), 350-360.
- Štefan Porubský, Further Congruences Involving Bernoulli Numbers, Journal of Number Theory 16, 87-94 (1983).
- Georgy Feodosevich Voronyi, On Bernoulli numbers, Comm. Charkou Math. Sot. 2, 129-148 (1890) (in Russian).
Links
- Digital Library of Mathematical Functions, Voronoi's congruence.
Programs
-
Maple
Voronoi := (a, k) -> ((a^k - 1) * bernoulli(k)) / (k * a^(k - 1)): VoronoiList := (a, len) -> local k; [seq(Voronoi(a, 2*k), k = 1..len)]: numer(VoronoiList(3, 18));
Formula
a(n) = Voronoi(3, 2*n) * 3^(2*n + valuation(n, 3)).
Comments