cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A371658 G.f. satisfies A(x) = 1 + x * A(x)^2 * (1 + A(x))^2.

Original entry on oeis.org

1, 4, 48, 784, 14784, 302976, 6555648, 147380480, 3408817152, 80592320512, 1938923790336, 47314993324032, 1168315059240960, 29136848453632000, 732857340425011200, 18569095605771632640, 473534596510970019840, 12144227894941523116032
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 4^(n-k)*binomial(n, k)*binomial(3*n-k, n-1-2*k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 4^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-2*k) for n > 0.
a(n) = 2^n * A219538(n). - Seiichi Manyama, Dec 26 2024

A371655 G.f. satisfies A(x) = 1 + x * A(x) * (1 + A(x))^2.

Original entry on oeis.org

1, 4, 32, 336, 4032, 52352, 716032, 10161408, 148229120, 2208921600, 33482670080, 514630230016, 8001860567040, 125640146354176, 1989285578473472, 31725578742464512, 509178657425326080, 8217766225008656384, 133287551280741351424, 2171450128344786403328
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 4^(n-k)*binomial(n, k)*binomial(2*n-k, n-1-2*k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 4^(n-k) * binomial(n,k) * binomial(2*n-k,n-1-2*k) for n > 0.
a(n) = 2^n * A100327(n). - Seiichi Manyama, Dec 26 2024

A371660 G.f. satisfies A(x) = 1 + x * A(x)^3 * (1 + A(x) + A(x)^2).

Original entry on oeis.org

1, 3, 36, 603, 11745, 249372, 5599044, 130735620, 3142426428, 77238209502, 1932396279066, 49047725266101, 1259884849971465, 32690034127387431, 855528520866461010, 22556952666651901761, 598607836414445357145, 15976563963437863357146
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 3^(n-k)*binomial(n, k)*binomial(4*n-k, n-1-2*k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 3^(n-k) * binomial(n,k) * binomial(4*n-k,n-1-2*k) for n > 0.

A371669 G.f. satisfies A(x) = 1 + x * A(x)^3 * (1 + A(x))^2/2.

Original entry on oeis.org

1, 2, 16, 178, 2300, 32380, 481932, 7458370, 118809868, 1935217180, 32083715344, 539615356884, 9184652815816, 157908543871712, 2738272978314500, 47837620415491554, 841151610003847564, 14874918252400486060, 264381545177102073600, 4720297172922980155740
Offset: 0

Views

Author

Seiichi Manyama, Apr 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 2^(n-2*k)*binomial(n, k)*binomial(4*n-k, n-1-2*k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 2^(n-2*k) * binomial(n,k) * binomial(4*n-k,n-1-2*k) for n > 0.
Showing 1-4 of 4 results.