A371665 T(n,k) is the number of reduced unicellular hypermonopoles on n points with k hyperedges, where T(n,k), 1 <= k <= floor(n/2), is an array read by rows.
1, 0, 1, 8, 0, 0, 36, 0, 180, 0, 49, 0, 1604, 0, 21, 8064, 0, 5144, 0, 0, 112608, 0, 7680, 0, 604800, 0, 604428, 0, 5445, 0, 11799360, 0, 1669052, 0, 1485, 68428800, 0, 91705536, 0, 2610608, 0, 0, 1741669632, 0, 384036016, 0, 2342340, 0, 10897286400, 0, 18071744976, 0, 972895560, 0, 1126125
Offset: 3
Examples
The table begins: 1; 0, 1; 8, 0; 0, 36, 0; 180, 0, 49; 0, 1604, 0, 21; 8064, 0, 5144, 0; 0, 112608, 0, 7680, 0; 604800, 0, 604428, 0, 5445; 0, 11799360, 0, 1669052, 0, 1485; 68428800, 0, 91705536, 0, 2610608, 0; 0, 1741669632, 0, 384036016, 0, 2342340, 0;
Links
- Robert Cori and Gábor Hetyei, On reduced unicellular hypermonopoles, arXiv:2403.19569 [math.CO], 2024.
Programs
-
Maple
proc(n, k) local i; coeff(expand(add(combinat:-binomial(n, i)*(-x)^i*(pochhammer(x, n - i + 1) - pochhammer(x - n + i, n - i + 1))/((n - i)*(n - i + 1)), i = 0 .. n - 1)), x, k); end proc
Comments