cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371665 T(n,k) is the number of reduced unicellular hypermonopoles on n points with k hyperedges, where T(n,k), 1 <= k <= floor(n/2), is an array read by rows.

Original entry on oeis.org

1, 0, 1, 8, 0, 0, 36, 0, 180, 0, 49, 0, 1604, 0, 21, 8064, 0, 5144, 0, 0, 112608, 0, 7680, 0, 604800, 0, 604428, 0, 5445, 0, 11799360, 0, 1669052, 0, 1485, 68428800, 0, 91705536, 0, 2610608, 0, 0, 1741669632, 0, 384036016, 0, 2342340, 0, 10897286400, 0, 18071744976, 0, 972895560, 0, 1126125
Offset: 3

Views

Author

Gabor Hetyei, Apr 02 2024

Keywords

Comments

T(n,k) is zero unless k <= n/2. (proven to be correct)

Examples

			The table begins:
         1;
         0,          1;
         8,          0;
         0,         36,        0;
       180,          0,       49;
         0,       1604,        0,        21;
      8064,          0,     5144,         0;
         0,     112608,        0,      7680,       0;
    604800,          0,   604428,         0,    5445;
         0,   11799360,        0,   1669052,       0,    1485;
  68428800,          0, 91705536,         0, 2610608,       0;
         0, 1741669632,        0, 384036016,       0, 2342340, 0;
		

Crossrefs

Programs

  • Maple
    proc(n, k)
        local i;
        coeff(expand(add(combinat:-binomial(n, i)*(-x)^i*(pochhammer(x, n - i + 1) - pochhammer(x - n + i, n - i + 1))/((n - i)*(n - i + 1)), i = 0 .. n - 1)), x, k);
    end proc

Formula

T(n,k) = Sum_{i=0..k-1} (-1)^i binomial(n,i)*a(n-1-i,k-i) where the a(n,k) are the Hultman numbers from A164652.
T(2*m+1,1) = (2*m)! / (m+1) = A060593(m) for m >= 1.