A371673 Expansion of g.f. A(x) satisfying [x^(n-1)] A(x)^(n^2) = A000108(n-1) * n^n for n >= 1, where A000108 is the Catalan numbers.
1, 1, 2, 15, 284, 8575, 345460, 17190684, 1012901520, 68810750943, 5291667341342, 454479660308531, 43140290728900554, 4487833959824527910, 508072065566891421336, 62222074620010689986918, 8200304581300850453687880, 1157674985567876068399895997, 174357014524193551292388873190
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 15*x^3 + 284*x^4 + 8575*x^5 + 345460*x^6 + 17190684*x^7 + 1012901520*x^8 + 68810750943*x^9 + 5291667341342*x^10 + ... The table of coefficients of x^k in A(x)^(n^2) begin: n=1: [1, 1, 2, 15, 284, 8575, 345460, ...]; n=2: [1, 4, 14, 88, 1365, 38304, 1497150, ...]; n=3: [1, 9, 54, 363, 4410, 105705, 3874824, ...]; n=4: [1, 16, 152, 1280, 13804, 263408, 8535648, ...]; n=5: [1, 25, 350, 3875, 43750, 688205, 18352800, ...]; n=6: [1, 36, 702, 10200, 133389, 1959552, 42189822, ...]; n=7: [1, 49, 1274, 23863, 376320, 5810763, 108707676, ...]; ... where the terms along the main diagonal start as [1, 4, 54, 1280, 43750, 1959552, 108707676, ...] which equals A000108(n-1)*n^n for n >= 1: [1, 1*2^2, 2*3^3, 5*4^4, 14*5^5, 42*6^6, 132*7^7, ...]. Compare the above table to the coefficients in 1/(1 - n*x)^n: n=1: [1, 1, 1, 1, 1, 1, 1, ...]; n=2: [1, 4, 12, 32, 80, 192, 448, ...]; n=3: [1, 9, 54, 270, 1215, 5103, 20412, ...]; n=4: [1, 16, 160, 1280, 8960, 57344, 344064, ...]; n=5: [1, 25, 375, 4375, 43750, 393750, 3281250, ...]; n=6: [1, 36, 756, 12096, 163296, 1959552, 21555072, ...]; n=7: [1, 49, 1372, 28812, 504210, 7764834, 108707676, ...]; ... to see that the main diagonals are equal.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Programs
-
PARI
{a(n) = my(A=[1], m); for(i=1,n, A=concat(A,0); m=#A; A[m] = ( m^m*binomial(2*m-1,m-1)/(2*m-1) - Vec( Ser(A)^(m^2) )[m] )/(m^2) );A[n+1]} for(n=0,30,print1(a(n),", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) [x^(n-1)] A(x)^(n^2) = n^n * binomial(2*n-1,n-1)/(2*n-1) for n >= 1.
(2) [x^(n-1)] A(x)^(n^2) = [x^(n-1)] 1/(1 - n*x)^n for n >= 1.
Comments