cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371686 Triangle read by rows: T(n, k) = e * binomial(n, k) * Gamma(k + 1, 1).

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 1, 6, 15, 16, 1, 8, 30, 64, 65, 1, 10, 50, 160, 325, 326, 1, 12, 75, 320, 975, 1956, 1957, 1, 14, 105, 560, 2275, 6846, 13699, 13700, 1, 16, 140, 896, 4550, 18256, 54796, 109600, 109601, 1, 18, 180, 1344, 8190, 41076, 164388, 493200, 986409, 986410
Offset: 0

Views

Author

Peter Luschny, Apr 03 2024

Keywords

Examples

			Triangle starts:
  [0] 1;
  [1] 1,  2;
  [2] 1,  4,   5;
  [3] 1,  6,  15,  16;
  [4] 1,  8,  30,  64,   65;
  [5] 1, 10,  50, 160,  325,  326;
  [6] 1, 12,  75, 320,  975, 1956,  1957;
  [7] 1, 14, 105, 560, 2275, 6846, 13699, 13700;
		

Crossrefs

Cf. A000522 (main diagonal), A007526 (subdiagonal), A010842 (row sums), A000142 and A133942 (alternating row sums), A367963 (central terms).

Programs

  • Maple
    T := (n, k) -> binomial(n, k)*GAMMA(k + 1, 1)*exp(1):
    seq(seq(simplify(T(n, k)), k = 0..n), n = 0..9);
  • Mathematica
    T[n_,k_]:=(n!/(n-k)!)*Sum[1/j!,{j,0,k}];Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Apr 06 2024 *)

Formula

T(n, k) = (n! / (n - k)!)*(Sum_{j = 0..k} (1 / j!)). - Detlef Meya, Apr 06 2024