A371688 Triangle read by rows: T(n, k) = (2*n + 1)! * [y^(2*k)] [x^(2*n+1)] arctan(sec(x*y)*sinh(x)).
1, -1, 3, 5, -50, 25, -61, 1281, -2135, 427, 1385, -49860, 174510, -116340, 12465, -50521, 2778655, -16671930, 23340702, -8335965, 555731, 2702765, -210815670, 1932476975, -4637944740, 3478458555, -772990790, 35135945
Offset: 0
Examples
Triangle starts: [0] 1; [1] -1, 3; [2] 5, -50, 25; [3] -61, 1281, -2135, 427; [4] 1385, -49860, 174510, -116340, 12465; [5] -50521, 2778655, -16671930, 23340702, -8335965, 555731;
Crossrefs
Programs
-
Maple
egf := arctan(sec(x*y)*sinh(x)): serx := simplify(series(egf, x, 26)): coeffx := n -> n!*coeff(serx, x, n): seq(lprint(seq(coeff(coeffx(2*n + 1), y, 2*k), k = 0..n)), n = 0..7);
-
Mathematica
T[n_,k_]:=(-1)^k*Binomial[2*n+1,2*k]*EulerE[2*n];Flatten[Table[T[n,k],{n,0,6},{k,0,n}]] (* Detlef Meya, Apr 07 2024 *)
Formula
T(n, k) = (-1)^k*binomial(2*n + 1, 2*k)*Euler(2*n). - Detlef Meya, Apr 07 2024
Comments