cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371708 Expansion of g.f. A(x) satisfying A( x*A(x - x^2) ) = x^2.

Original entry on oeis.org

1, 1, 1, 2, 6, 19, 60, 193, 636, 2141, 7331, 25451, 89385, 317036, 1134100, 4087104, 14825482, 54088470, 198348985, 730723956, 2703194553, 10037648254, 37399878530, 139785998185, 523962161491, 1969154471389, 7418488063284, 28010998254007, 105986233046356, 401804972780552
Offset: 1

Views

Author

Paul D. Hanna, Apr 23 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 19*x^6 + 60*x^7 + 193*x^8 + 636*x^9 + 2141*x^10 + 7331*x^11 + 25451*x^12 + 89385*x^13 + 317036*x^14 + ...
where A( x*A(x - x^2) ) = x^2.
RELATED SERIES.
Let R(x) be the series reversion of A(x), A(R(x)) = x, which begins
R(x) = x - x^2 + x^3 - 2*x^4 + 2*x^5 - 5*x^6 + 6*x^7 - 16*x^8 + 23*x^9 - 62*x^10 + 100*x^11 - 270*x^12 + 463*x^13 - 1254*x^14 + 2224*x^15 - 6050*x^16 + ...
then R( R(x^2)/x ) = x - x^2.
Also, the bisections B1 and B2 of R(x) are
B1 = (R(x) - R(-x))/2 = x + x^3 + 2*x^5 + 6*x^7 + 23*x^9 + 100*x^11 + 463*x^13 + 2224*x^15 + 10963*x^17 + ...
B2 = (R(x) + R(-x))/2 = -x^2 - 2*x^4 - 5*x^6 - 16*x^8 - 62*x^10 - 270*x^12 - 1254*x^14 - 6050*x^16 + ...
and satisfy B1^2 + B2 = 0 and A(x*B1) = B1^2.
SPECIFIC VALUES.
A( A(1/4) / 2 ) = 1/4 where
A(1/4) = 0.39241307250698647662923990494867613212061604622566765...
A( A(2/9) / 3 ) = 1/9 where
A(2/9) = 0.29957319341272312632777466712131772539171747971866175...
A( A(3/16) / 4 ) = 1/16 where
A(3/16) = 0.2352360051274118086289466324430753987734355106832392...
A( A(4/25) / 5 ) = 1/25 where
A(4/25) = 0.1922953260179964363449115205476634347705922222443464...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( x^2 - subst(Ser(A),x, x*subst(Ser(A),x, x - x^2) ), #A));A[n+1]}
    for(n=1,35,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n, along with its series reversion R(x), satisfy the following formulas.
(1) A( x*A(x - x^2) ) = x^2.
(2) A(x - x^2) = R(x^2)/x.
(3) (R(x) - R(-x))^2 + 2*(R(x) + R(-x)) = 0.
(4) R(x) = R(-x) - 1 + sqrt(1 - 4*R(-x)).
(5) A(x) = -A( x - 1 + sqrt(1 - 4*x) ).
(6) A(x) = -A(x - 2*C(x)) where C(x) = -C(x - 2*C(x)) is a g.f. of the Catalan numbers (A000108).
(7) A( A(x)*C(x) ) = C(x)^2 where C(x) = (1 - sqrt(1 - 4*x))/2 is a g.f. of the Catalan numbers (A000108).
a(n) ~ c * 4^n / n^(3/2), where c = 0.0517683007874758928168667... - Vaclav Kotesovec, Apr 24 2024