cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A272463 G.f. A(x) satisfies: A( x^2*A(x) - x^2*A(x)^2 ) = x^3.

Original entry on oeis.org

1, 1, 2, 4, 12, 36, 112, 360, 1184, 3969, 13506, 46550, 162160, 570076, 2019864, 7205654, 25859788, 93299268, 338207096, 1231194329, 4499137382, 16498152995, 60689045230, 223891151262, 828156420320, 3070760666368, 11411884518800, 42498639965025, 158575098942194, 592761262161240, 2219513277432130, 8323806778346002, 31262959171040784, 117582688976071889, 442819400938052362, 1669735077567533522, 6303424784771599874, 23822450122837267190
Offset: 1

Views

Author

Paul D. Hanna, Apr 29 2016

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 4*x^4 + 12*x^5 + 36*x^6 + 112*x^7 + 360*x^8 + 1184*x^9 + 3969*x^10 + 13506*x^11 + 46550*x^12 +...
where A( x^2*A(x) - x^2*A(x)^2 ) = x^3.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 36*x^6 + 112*x^7 + 360*x^8 + 1184*x^9 + 3968*x^10 + 13506*x^11 + 46550*x^12 +...
A(x) - A(x)^2 = x - x^4 + x^10 - 4*x^13 + 6*x^16 - 27*x^22 + 84*x^25 - 119*x^28 - 70*x^31 + 861*x^34 - 2362*x^37 + 2716*x^40 + 4848*x^43 - 31892*x^46 +...
Let B(x) be the series reversion of g.f. A(x), A(B(x)) = x, then
B(x) = x - x^2 + x^4 - 4*x^5 + 6*x^6 - 27*x^8 + 84*x^9 - 119*x^10 - 70*x^11 + 861*x^12 - 2362*x^13 + 2716*x^14 + 4848*x^15 - 31892*x^16 +...
such that A(x) - A(x)^2 = B(x^3)/x^2.
SPECIFIC VALUES.
A(1/4) = 0.43750716413214762438474169851025169044...
A(1/5) = 0.2728438844373996476937912739143254714680748999753267...
A(1/6) = 0.2099915138524924668889213019413855047403227975244006...
A(1/7) = 0.1720375832939219643807299314288451907008185008379640...
A(1/8) = 0.1461015121522386794470333784876359422356861236711932...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1,1], F=x); for(i=1,n, A=concat(A,0); F=x*Ser(A); A[#A] = polcoeff(x^3 - subst(F,x, x^2*F - x^2*F^2),#A+2) ); A[n]}
    for(n=1,50,print1(a(n),", "))

Formula

Let B(x) be the series reversion of A(x) so that A(B(x)) = x, then
(1) B(x)^2 = B(B(x)^3) / (x - x^2).
(2) B(x^3)/x^2 = A(x) - A(x)^2.
(3) A(x) = (1 - sqrt(1 - 4*B(x^3)/x^2)) / 2.
(4) A(x) = C( B(x^3)/x^2 ), where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers A000108.
a(n) ~ c * d^n / n^(3/2), where d = 3.9343346144956442477821996521921... and c = 0.1374726251259662065926106275441... . - Vaclav Kotesovec, May 03 2016
Let r be the radius of convergence, then A(r) = 1/2, where r = A(r^2/4)^(1/3) = 0.25417258519791494791315235901614229902947074103519177... = 1/d (d is given above). - Paul D. Hanna, Apr 06 2024
Showing 1-1 of 1 results.