cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A371741 Triangle read by rows: g.f. (1 - t)^(-x) * (1 + t)^(3-x).

Original entry on oeis.org

1, 3, 3, 1, 1, 3, 0, 7, 1, 0, 5, 3, 0, 11, 12, 1, 0, 9, 12, 3, 0, 30, 47, 18, 1, 0, 26, 45, 22, 3, 0, 114, 215, 125, 25, 1, 0, 102, 205, 135, 35, 3, 0, 552, 1174, 855, 265, 33, 1, 0, 504, 1122, 885, 315, 51, 3, 0, 3240, 7518, 6349, 2520, 490, 42, 1, 0, 3000, 7210, 6447, 2800, 630, 70, 3
Offset: 0

Views

Author

Peter Bala, Apr 05 2024

Keywords

Examples

			Triangle begins
  n\k |  0     1     2     3     4      5
  - - - - - - - - - - - - - - - - - - - -
   0  |  1
   1  |  3
   2  |  3     1
   3  |  1     3
   4  |  0     7     1
   5  |  0     5     3
   6  |  0    11    12     1
   7  |  0     9    12     3
   8  |  0    30    47    18     1
   9  |  0    26    45    22     3
  10  |  0   114   215   125    25     1
  11  |  0   102   205   135    35     3
  ...
		

Crossrefs

Programs

  • Maple
    with(combinat):
    T := proc (n, k); if irem(n, 2) = 0 then abs(Stirling1((1/2)*n, k)) + (3*n/2)*abs(Stirling1((n-2)/2, k)) else 3*abs(Stirling1((n-1)/2, k)) + ((n-1)/2)*abs(Stirling1((n-3)/2, k)) end if; end proc:
    seq(print(seq(T(n, k), k = 0..floor(n/2))), n = 0..12);

Formula

G.f.: (1 - t)^(-x)*(1 + t)^(3-x) = Sum_{n >= 0} R(n, x)*t^n/floor(n/2)! = 1 + 3*t + (3 + x)^t^2/1! + (1 + 3*x)*t^3/1! + x*(7 + x)*t^4/2! + x*(5 + 3*x)*t^5/2! + x*(1 + x)*(11 + x)*t^6/3! + x*(1 + x)*(9 + 3*x)*t^7/3! + x*(1 + x)*(2 + x)*(15 + x)*t^8/4! + x*(1 + x)*(2 + x)*(13 + 3*x)*t^9/4! + ....
Row polynomials: R(2*n, x) = (4*n - 1 + x) * Product_{i = 0..n-2} (x + i) for n >= 1.
R(2*n+1, x) = (4*n - 3 + 3*x) * Product_{i = 0..n-2} (x + i) for n >= 1.
T(2*n, k) = |Stirling1(n, k)| + 3*n*|Stirling1(n-1, k)| = A132393(n, k) + 3*n*A132393(n-1, k).
T(2*n+1, k) = 3*|Stirling1(n, k)| + n*|Stirling1(n-1, k)| = 3*A132393(n, k) + n*A132393(n-1, k).
T(2*n, k) = (4*n - 1)*A132393(n-1, k) + A132393(n-1, k-1).
T(2*n+1, k) = (4*n - 3)*A132393(n-1, k) + 3*A132393(n-1, k-1).
n-th row sums equals 4*floor(n/2)! for n >= 2.
Showing 1-1 of 1 results.