A371793 Number of non-biquanimous subsets of {1..n} containing n.
1, 2, 3, 6, 12, 22, 44, 84, 163, 314, 610, 1184, 2308, 4505, 8843, 17386, 34336, 67881, 134662, 267431, 532172, 1060048, 2113947, 4218325, 8423138, 16826162, 33623311, 67205646, 134351795, 268621562, 537124814, 1074092608, 2147953084, 4295613139, 8590784715, 17181035797, 34361248692, 68721546255, 137441586921, 274881519876, 549760320576, 1099517861045, 2199030848627, 4398057100987, 8796105652038, 17592203866158
Offset: 1
Keywords
Examples
The a(1) = 1 through a(5) = 12 subsets: {1} {2} {3} {4} {5} {1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {1,2,4} {4,5} {2,3,4} {1,2,5} {1,3,5} {2,4,5} {3,4,5} {1,2,3,5} {1,3,4,5} {1,2,3,4,5}
Programs
-
Mathematica
biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2]; Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!biqQ[#]&]],{n,15}]
Extensions
a(16) onwards from Martin Fuller, Mar 21 2025
Comments