A371795 Number of non-biquanimous integer partitions of n.
0, 1, 1, 3, 2, 7, 5, 15, 8, 30, 17, 56, 24, 101, 46, 176, 64, 297, 107, 490, 147, 792, 242, 1255, 302, 1958, 488, 3010, 629, 4565, 922, 6842, 1172, 10143, 1745, 14883, 2108, 21637, 3104, 31185, 3737, 44583, 5232, 63261, 6419, 89134, 8988, 124754, 10390, 173525
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 8 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (21) (31) (32) (42) (43) (53) (111) (41) (51) (52) (62) (221) (222) (61) (71) (311) (411) (322) (332) (2111) (331) (521) (11111) (421) (611) (511) (5111) (2221) (3211) (4111) (22111) (31111) (211111) (1111111)
Programs
-
Mathematica
biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2]; Table[Length[Select[IntegerPartitions[n],Not@*biqQ]],{n,0,15}]
-
PARI
a(n) = if(n%2, numbpart(n), my(v=partitions(n/2), w=List([])); for(i=1, #v, for(j=1, i, listput(w, vecsort(concat(v[i], v[j]))))); numbpart(n)-#Set(w)); \\ Jinyuan Wang, Feb 13 2025
Extensions
More terms from Jinyuan Wang, Feb 13 2025
Comments