cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371799 Rectangular array, read by downward antidiagonals: row n shows the numbers m>1 in whose prime factorization p(1)^e(1)*p(2)^e(2)* ...*p(k)^e(k), all e(i) are <= 1 and the number of 0' s in {e(i)} is n-1.

Original entry on oeis.org

2, 6, 3, 30, 10, 5, 210, 15, 14, 7, 2310, 42, 21, 22, 11, 30030, 70, 35, 33, 26, 13, 510510, 105, 66, 55, 39, 34, 17, 9699690, 330, 110, 77, 65, 51, 38, 19, 223092870, 462, 154, 78, 91, 85, 57, 46, 23, 6469693230, 770, 165, 130, 102, 114, 95, 69, 58, 29
Offset: 1

Views

Author

Clark Kimberling, Apr 10 2024

Keywords

Examples

			15 = 2^0*3^1*51, so (e(1),e(2),e(3)) = (0,1,1), so 15 is in row 2
Corner:
 2   6   30  210  2310  30030  510510  9699690
 3   10  15   42    70    105     330      462
 5   14  21   35    66    110     154      165
 7   22  33   55    77     78     130      182
11   26  39   65    91    102     143      170
13   34  51   85   114    119     187      190
17   38  57   95   133    138     209      230
19   46  69  115   161    174     253      290
23   58  87  145   186    203     310      319
		

Crossrefs

Cf. A000040 (the primes, column 1), A002110 (row 1), A005117 (increasing sequence of all terms of the array), A340316, A371801, A371802, A371803, A371804.

Programs

  • Mathematica
    exps := Map[#[[2]] &, Sort[Join[#, Complement[Map[{Prime[#], 0} &, Range[PrimePi[Last[#][[1]]]]], Map[{#[[1]], 0} &, #]]]] &[FactorInteger[#]]] &;
    m = Map[Transpose[#][[1]] &, GatherBy[Map[{#[[1]], Count[#[[2]], 0]} &,     Select[Map[{#, exps[#]} &, Range[2, 5000]], Max[#[[2]]] <= 1 &]], #[[2]] &]];
    z = 12; row1 = Table[Apply[Times, Prime[Range[n]]], {n, 1, z}];
    r = Join[{row1}, Table[Take[m[[n]], z], {n, 2, z}]];
    Grid[r]  (* array *)
    w[n_, k_] := r[[n]][[k]]
    Table[w[n - k + 1, k], {n, z}, {k, n, 1, -1}] // Flatten
    (* sequence *)(* Peter J. C. Moses, Mar 21 2024 *)

A372253 Decimal expansion of Sum_{k>=0} (1 / (k^2 + k + 1)).

Original entry on oeis.org

1, 7, 9, 8, 1, 4, 7, 2, 8, 0, 5, 6, 2, 6, 9, 0, 1, 8, 0, 9, 0, 5, 8, 2, 0, 1, 2, 4, 3, 3, 7, 4, 2, 2, 9, 3, 2, 9, 2, 0, 3, 2, 4, 6, 3, 4, 3, 7, 1, 8, 3, 9, 1, 4, 3, 3, 8, 6, 8, 3, 9, 4, 7, 3, 0, 0, 4, 6, 6, 8, 4, 5, 8, 3, 3, 6, 6, 9, 1, 5, 2, 9, 5, 9, 8, 1
Offset: 1

Views

Author

Clark Kimberling, Apr 24 2024

Keywords

Examples

			1.79814728056269018090582012433742293292032463437183...
		

Crossrefs

Cf. A371804.

Programs

  • Mathematica
    s = Chop[N[Sum[1/(k^2 + k + 1), {k, 0, Infinity}], 120]]
    First[RealDigits[s]]
Showing 1-2 of 2 results.