A371808 Exponents k > 0 of powers of 2 such that the decimal expansion of 2^k contains more than one 666 substring (overlapping substrings are counted as distinct).
220, 222, 243, 529, 624, 648, 662, 702, 714, 838, 840, 842, 844, 846, 850, 857, 859, 867, 869, 871, 924, 925, 927, 929, 931, 975, 979, 981, 983, 1056, 1058, 1062, 1088, 1133, 1135, 1160, 1162, 1219, 1230, 1241, 1259, 1310, 1341, 1343, 1349, 1384, 1394, 1411, 1420
Offset: 1
Examples
243 is a term because 2^243 contains two (overlapping) 666 substrings in its decimal expansion: . *** 14134776518227074636666380005943348126619871175004951664972849610340958208. ***
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Brady Haran and Tony Padilla, Apocalyptic Numbers, YouTube Numberphile video, 2024.
- Eric Weisstein's World of Mathematics, Apocalyptic Number.
Programs
-
Mathematica
Select[Range[2000], StringCount[IntegerString[2^#], "666", Overlaps->True] > 1 &]
-
Python
def ok(n): return (s:=str(1<
1 or "6666" in s print([k for k in range(2000) if ok(k)]) # Michael S. Branicky, Apr 07 2024
Comments