A371806 Exponents k > 0 of powers of 2 such that the decimal expansion of 2^k contains more than one nonoverlapping 666 substring.
220, 222, 529, 624, 648, 702, 714, 844, 846, 850, 859, 924, 925, 929, 931, 979, 981, 983, 1062, 1088, 1133, 1135, 1219, 1230, 1241, 1259, 1310, 1343, 1349, 1384, 1394, 1467, 1472, 1495, 1503, 1524, 1550, 1589, 1627, 1631, 1642, 1652, 1656, 1663, 1679, 1744, 1751
Offset: 1
Examples
220 is a term because 2^220 contains more than one nonoverlapping 666 substring in its decimal expansion: 2^220 = 168499(666)66969149871(666)88442938726917102321526408785780068975640576.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Brady Haran and Tony Padilla, Apocalyptic Numbers, YouTube Numberphile video, 2024.
- Eric Weisstein's World of Mathematics, Apocalyptic Number.
Programs
-
Mathematica
Select[Range[2000], StringCount[IntegerString[2^#], "666"] > 1 &]
-
Python
def ok(n): return str(1<
1 print([k for k in range(2000) if ok(k)]) # Michael S. Branicky, Apr 07 2024
Comments