cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371872 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-2*k-1,n-3*k).

Original entry on oeis.org

1, 1, 3, 11, 40, 147, 547, 2055, 7777, 29602, 113204, 434591, 1673821, 6464539, 25026534, 97087873, 377329971, 1468856383, 5726159811, 22351657810, 87350137071, 341726039806, 1338173763288, 5244830032639, 20573285744475, 80761011408961, 317249771957040
Offset: 0

Views

Author

Seiichi Manyama, Apr 10 2024

Keywords

Crossrefs

Programs

  • Maple
    A371872 := proc(n)
        add(binomial(2*n-2*k-1,n-3*k),k=0..floor(n/3)) ;
    end proc:
    seq(A371872(n),n=0..60) ; # R. J. Mathar, Apr 22 2024
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-2*k-1, n-3*k));

Formula

a(n) = [x^n] 1/((1-x-x^3) * (1-x)^(n-1)).
D-finite with recurrence +n*a(n) +(-15*n+14)*a(n-1) +3*(27*n-50)*a(n-2) +2*(-93*n+259)*a(n-3) +24*(7*n-26)*a(n-4) +(-69*n+260)*a(n-5) +10*(2*n-9)*a(n-6)=0. - R. J. Mathar, Apr 22 2024

A371854 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-k+2,n-3*k).

Original entry on oeis.org

1, 4, 15, 57, 219, 847, 3290, 12819, 50066, 195909, 767790, 3013002, 11837043, 46548919, 183209125, 721628692, 2844297119, 11217639757, 44265835891, 174765349896, 690308413773, 2727823240762, 10783518961394, 42644560775835, 168699835910561, 667580653569309
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-k+2, n-3*k));

Formula

a(n) = [x^n] 1/(((1-x)^2-x^3) * (1-x)^(n+1)).
Showing 1-2 of 2 results.