cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371983 Decimal expansion of Gamma(1/30).

Original entry on oeis.org

2, 9, 4, 5, 4, 7, 7, 9, 7, 4, 5, 6, 9, 9, 6, 9, 4, 0, 1, 9, 6, 9, 6, 2, 0, 8, 2, 8, 8, 6, 3, 8, 3, 4, 5, 7, 3, 4, 7, 0, 1, 8, 7, 3, 6, 0, 5, 5, 7, 2, 9, 7, 1, 1, 0, 4, 6, 5, 6, 5, 4, 1, 5, 5, 6, 7, 4, 9, 8, 8, 0, 5, 4, 5, 9, 9, 0, 5, 0, 1, 2, 0, 8, 2, 1, 9, 5, 7, 9, 4, 8, 5, 0, 9, 6, 5, 2, 1, 2, 9, 3, 8, 7, 6, 7
Offset: 2

Views

Author

Vaclav Kotesovec, Apr 15 2024

Keywords

Examples

			29.4547797456996940196962082886383457347018736055729711046565415567498...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(1/30), 130);  # Alois P. Heinz, Apr 15 2024
  • Mathematica
    RealDigits[Gamma[1/30], 10, 120][[1]]
    RealDigits[2^(11/60) * 3^(9/20) * 5^(1/3) * Gamma[1/5] * Gamma[1/3] / ((10 + Sqrt[5] - Sqrt[75 + 30*Sqrt[5]])^(1/4) * Sqrt[Pi]), 10, 120][[1]]

Formula

Equals 3^(9/20) * sqrt(5 + sqrt(5)) * sqrt(sqrt(15) + sqrt(5 + 2*sqrt(5))) * Gamma(1/3) * Gamma(1/5) / (sqrt(Pi) * 2^(16/15) * 5^(1/6)).
Equals 2^(11/60) * 3^(9/20) * 5^(1/3) * Gamma(1/5) * Gamma(1/3) / ((10 + sqrt(5) - sqrt(75 + 30*sqrt(5)))^(1/4) * sqrt(Pi)).
Equals 8*Pi^2 / (Gamma(17/30) * Gamma(19/30) * Gamma(23/30)).
Equals Gamma(7/30) * Gamma(11/30) * Gamma(13/30) / (2*Pi*A019815).

A373534 Decimal expansion of Pi^(1/2)*Gamma(1/20)/(10*Gamma(11/20)).

Original entry on oeis.org

2, 1, 3, 5, 3, 4, 4, 9, 3, 3, 2, 4, 8, 0, 0, 4, 2, 2, 8, 0, 4, 6, 4, 7, 5, 2, 7, 9, 6, 8, 3, 7, 0, 6, 7, 7, 8, 8, 1, 0, 8, 7, 9, 3, 6, 6, 0, 1, 6, 4, 9, 4, 0, 0, 4, 0, 7, 7, 3, 1, 4, 4, 2, 9, 1, 0, 8, 7, 0, 3, 3, 0, 0, 1, 4, 9, 6, 8, 8, 3, 7, 8, 0, 6, 6, 5, 8, 3, 6, 5, 1, 2, 2, 2, 2, 2, 0, 5, 9, 6, 5
Offset: 1

Views

Author

Takayuki Tatekawa, Jun 08 2024

Keywords

Comments

Constants from generalized Pi integrals: the case of n=20.

Examples

			2.135344933248004228046475279683...
		

Crossrefs

Programs

  • Maple
    (2*sqrt(Pi)*GAMMA(21/20))/GAMMA(11/20): evalf(%, 102); # Peter Luschny, Jun 17 2024
  • Mathematica
    RealDigits[2*Sqrt[Pi]/20*Gamma[1/20]/Gamma[11/20], 10, 5001][[1]]

Formula

Equals 2*Integral_{x=0..1} dx/sqrt(1-x^20).
Equals (2*sqrt(Pi)*Gamma(21/20))/Gamma(11/20). - Peter Luschny, Jun 17 2024
Showing 1-2 of 2 results.