A371895 a(n) is the least k>0 such that n*k contains the n-th prime as a substring.
2, 15, 5, 18, 22, 22, 25, 24, 26, 29, 21, 31, 32, 31, 98, 96, 27, 34, 88, 355, 13, 36, 21, 79, 39, 39, 189, 383, 376, 371, 41, 41, 416, 41, 426, 42, 425, 43, 43, 433, 419, 431, 237, 44, 266, 433, 45, 465, 464, 458, 83, 46, 423, 417, 468, 47, 472, 468, 47, 469, 103, 473, 488, 486, 202, 481, 348, 496, 63, 499
Offset: 1
Examples
a(8) = 24 because 24 is the least positive integer such that 24*8 = 192 contains the prime(8) = 19.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local t,k; t:= convert(ithprime(n),string); for k from 1 do if StringTools:-Search(t, convert(n*k,string)) > 0 then return k fi od end proc: map(f, [$1..100]); # Robert Israel, Jun 05 2024
-
Mathematica
a[n_]:=(k=1;While[!StringContainsQ[ToString[n*k],ToString@Prime@n],k++];k); Array[a,70]
-
PARI
a(n) = my(k=1, s=Str(prime(n))); while(#strsplit(Str(k*n), s) < 2, k++); k; \\ Michel Marcus, Apr 11 2024
-
Python
from sympy import prime from itertools import count def a(n): t=str(prime(n)); return next(k for k in count(1) if t in str(n*k)) print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Apr 11 2024
-
Python
# faster for initial segment of sequence from sympy import nextprime from itertools import count, islice def agen(): # generator of terms pn = 2 for n in count(1): t = str(pn) yield next(k for k in count(1) if t in str(n*k)) pn = nextprime(pn) print(list(islice(agen(), 70))) # Michael S. Branicky, Apr 11 2024
Comments