A371898 Triangle read by rows: T(n, k) = n * k * (T(n-1, k-1) + T(n-1, k)) for k > 0 with initial values T(n, 0) = 1 and T(i, j) = 0 for j > i.
1, 1, 1, 1, 4, 4, 1, 15, 48, 36, 1, 64, 504, 1008, 576, 1, 325, 5680, 22680, 31680, 14400, 1, 1956, 72060, 510480, 1304640, 1382400, 518400, 1, 13699, 1036224, 12233340, 50823360, 94046400, 79833600, 25401600, 1, 109600, 16798768, 318469536, 2017814400, 5794790400, 8346240000, 5893171200, 1625702400
Offset: 0
Examples
Lower triangular array starts: n\k : 0 1 2 3 4 5 6 7 ========================================================================== 0 : 1 1 : 1 1 2 : 1 4 4 3 : 1 15 48 36 4 : 1 64 504 1008 576 5 : 1 325 5680 22680 31680 14400 6 : 1 1956 72060 510480 1304640 1382400 518400 7 : 1 13699 1036224 12233340 50823360 94046400 79833600 25401600 etc.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[(-1)^(k - j)*Binomial[k, j]*HypergeometricPFQ[{1, -n}, {}, -j], {j, 0, k}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Peter Luschny, Apr 12 2024 *)
-
PARI
T(n, k) = if(k==0, 1, if(k > n, 0, n*k*(T(n-1, k-1) + T(n-1, k))))
Formula
T(n, k) = Sum_{i=k..n} A131689(i, k) * n! / (n-i)!.
T(n, k) = n! * k! * (Sum_{i=0..n-k} A048993(n-i, k) / i!).
T(n, k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k, i) * A320031(n, i).
Conjecture: E.g.f. of column k is exp(t) * t^k * k! / (Prod_{i=0..k} (1 - i*t)).
Conjecture: Sum_{k=0..n} (-1)^(n-k) * T(n, k) = A000166(n).