cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371898 Triangle read by rows: T(n, k) = n * k * (T(n-1, k-1) + T(n-1, k)) for k > 0 with initial values T(n, 0) = 1 and T(i, j) = 0 for j > i.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 15, 48, 36, 1, 64, 504, 1008, 576, 1, 325, 5680, 22680, 31680, 14400, 1, 1956, 72060, 510480, 1304640, 1382400, 518400, 1, 13699, 1036224, 12233340, 50823360, 94046400, 79833600, 25401600, 1, 109600, 16798768, 318469536, 2017814400, 5794790400, 8346240000, 5893171200, 1625702400
Offset: 0

Views

Author

Werner Schulte, Apr 11 2024

Keywords

Examples

			Lower triangular array starts:
n\k :  0      1        2         3         4         5         6         7
==========================================================================
  0 :  1
  1 :  1      1
  2 :  1      4        4
  3 :  1     15       48        36
  4 :  1     64      504      1008       576
  5 :  1    325     5680     22680     31680     14400
  6 :  1   1956    72060    510480   1304640   1382400    518400
  7 :  1  13699  1036224  12233340  50823360  94046400  79833600  25401600
  etc.
		

Crossrefs

Cf. A000012 (column 0), A007526 (column 1), A001044 (main diagonal).

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^(k - j)*Binomial[k, j]*HypergeometricPFQ[{1, -n}, {}, -j], {j, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten  (* Peter Luschny, Apr 12 2024 *)
  • PARI
    T(n, k) = if(k==0, 1, if(k > n, 0, n*k*(T(n-1, k-1) + T(n-1, k))))

Formula

T(n, k) = Sum_{i=k..n} A131689(i, k) * n! / (n-i)!.
T(n, k) = n! * k! * (Sum_{i=0..n-k} A048993(n-i, k) / i!).
T(n, k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k, i) * A320031(n, i).
Conjecture: E.g.f. of column k is exp(t) * t^k * k! / (Prod_{i=0..k} (1 - i*t)).
Conjecture: Sum_{k=0..n} (-1)^(n-k) * T(n, k) = A000166(n).
T(n, k) = A371766(n, k) * A371767(n, k). - Peter Luschny, Apr 14 2024