A371766
Triangle read by rows: T(n, k) = A371898(n, k) / A371767(n, k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 16, 21, 7, 1, 1, 65, 142, 63, 11, 1, 1, 326, 1201, 709, 151, 16, 1, 1, 1957, 12336, 9709, 2521, 311, 22, 1, 1, 13700, 149989, 157971, 50045, 7186, 575, 29, 1, 1, 109601, 2113546, 2993467, 1158871, 193765, 17536, 981, 37, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 1;
[3] 1, 5, 4, 1;
[4] 1, 16, 21, 7, 1;
[5] 1, 65, 142, 63, 11, 1;
[6] 1, 326, 1201, 709, 151, 16, 1;
[7] 1, 1957, 12336, 9709, 2521, 311, 22, 1;
[8] 1, 13700, 149989, 157971, 50045, 7186, 575, 29, 1;
Antidiagonally read subtriangle of
A181783.
-
A371766 := (n, k) -> local j; add((-1)^(k-j)*binomial(k, j)*hypergeom([1, -n],
[], -j), j = 0..k)/((k! * n!)/(n - k)!):
seq(print(seq(simplify(A371766(n, k)), k = 0..n)), n = 0..8);
A181783
Array described in comments to A053482, here read by increasing antidiagonals. See comments below.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 4, 1, 1, 1, 16, 21, 7, 1, 1, 1, 65, 142, 63, 11, 1, 1, 1, 326, 1201, 709, 151, 16, 1, 1, 1, 1957, 12336, 9709, 2521, 311, 22, 1, 1, 1, 13700, 149989, 157971, 50045, 7186, 575, 29, 1, 1, 1, 109601, 2113546, 2993467, 1158871, 193765, 17536, 981, 37, 1
Offset: 0
Array read row after row:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 4, 7, 11, 16, ...
1, 1, 5, 21, 63, 151, 311, ...
1, 1, 16, 142, 709, 2521, 7186, ...
1, 1, 65, 1201, 9709, 50045, 193765, ...
1, 1, 326, 12336, 157971, 1158871, 6002996, ...
1, 1, 1957, 149989, 2993467, 30806371, 210896251, ...
...
A(4,3) = 1201.
-
A181783 := proc(n,k)
option remember;
if n =0 or k = 0 then
1;
else
n*(k-1)*procname(n-1,k)+procname(n,k-1) ;
end if;
end proc:
seq(seq(A181783(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Mar 02 2016
-
T[n_, k_] := T[n, k] = If[n == 0 || k == 0, 1, n (k - 1) T[n - 1, k] + T[n, k - 1]];
Table[T[n - k, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 10 2023 *)
A320031
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of the e.g.f. exp(x)/(1 - k*x).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 16, 1, 1, 5, 25, 79, 65, 1, 1, 6, 41, 226, 633, 326, 1, 1, 7, 61, 493, 2713, 6331, 1957, 1, 1, 8, 85, 916, 7889, 40696, 75973, 13700, 1, 1, 9, 113, 1531, 18321, 157781, 732529, 1063623, 109601, 1, 1, 10, 145, 2374, 36745, 458026, 3786745, 15383110, 17017969, 986410, 1
Offset: 0
E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (2*k^2 + 2*k + 1)*x^2/2! + (6*k^3 + 6*k^2 + 3*k + 1)*x^3/3! + (24*k^4 + 24*k^3 + 12*k^2 + 4*k + 1)*x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 5, 13, 25, 41, 61, ...
1, 16, 79, 226, 493, 916, ...
1, 65, 633, 2713, 7889, 18321, ...
1, 326, 6331, 40696, 157781, 458026, ...
-
A := (n, k) -> simplify(hypergeom([1, -n], [], -k)):
for n from 0 to 5 do seq(A(n, k), k=0..8) od; # Peter Luschny, Oct 03 2018
# second Maple program:
A:= proc(n, k) option remember;
1 + `if`(n>0, k*n*A(n-1, k), 0)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, May 09 2020
-
Table[Function[k, n! SeriesCoefficient[Exp[x]/(1 - k x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, HypergeometricPFQ[{1, -n}, {}, -k]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Showing 1-3 of 3 results.
Comments