A371900 Numbers k such that k+1 is composite and A371641(k) != p^2 where p = A020639(k+1) is the smallest prime factor of k+1.
406, 766, 988, 1036, 1072, 1138, 1246, 1396, 1402, 1456, 1500, 1642, 1738, 1762, 1768, 1816, 1918, 1926, 1942, 2076, 2116, 2158, 2182, 2278, 2506, 2716, 2746, 2812, 2866, 2920, 2992, 3076, 3148, 3172, 3286, 3316, 3382, 3496, 3568, 3682, 3706, 3712, 3742, 3762
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import count, islice from sympy import isprime, primefactors, factorint, integer_log def A371900_gen(startvalue=2): # generator of terms >= startvalue for n in count(max(startvalue,2)): if not isprime(n+1): q = min(primefactors(n+1)) for m in range(4,q**2): f = factorint(m) if sum(f.values()) > 1: c = 0 for p in sorted(f): a = pow(n,integer_log(p,n)[0]+1,m) for _ in range(f[p]): c = (c*a+p)%m if not c: yield n break A371900_list = list(islice(A371900_gen(),30))
Comments