cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371910 Position of A109890(n) among the sorted set of divisors of A109735(n-1).

Original entry on oeis.org

2, 4, 4, 4, 7, 6, 3, 4, 9, 5, 6, 12, 9, 9, 11, 14, 9, 13, 9, 4, 4, 3, 6, 7, 6, 10, 12, 5, 5, 6, 8, 9, 13, 12, 4, 15, 5, 3, 4, 6, 8, 4, 9, 17, 7, 2, 5, 3, 8, 7, 6, 13, 8, 17, 6, 7, 4, 9, 10, 8, 13, 17, 15, 7, 3, 7, 13, 5, 6, 16, 8, 11, 8, 5, 4, 13, 12, 17, 5, 6
Offset: 3

Views

Author

Michael De Vlieger, Apr 26 2024

Keywords

Comments

A109890(n) is the a(n)-th smallest divisor of A109735(n-1).

Examples

			Table relating sequences b = A109890, s = A109735, c = A371909. a(n) = c(n) implies both A111315(i) = n and A111316(i) = b(n) = s(n-1).
    n     b(n)   s(n-1)  a(n)  c(n)    i
   --------------------------------------
    3       3   =    3     2     2     1
    4       6   =    6     4     4     2
    5       4       12     4     6
    6       8       16     4     5
    7      12       24     7     8
    8       9       36     6     9
    9       5       45     3     6
   10      10       50     4     6
   11      15       60     9    12
   12      25       75     5     6
  ...
  222  113573 = 113573     4     4     3
  ...
  232  230801 = 230801     4     4     4
  ...
  279  941071 = 941071     4     4     5
  ...
		

Crossrefs

Programs

  • Mathematica
    nn = 120; c[_] := False;
    Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2];
    Reap[Do[d = Divisors[s]; k = SelectFirst[d, ! c[#] &];
        c[k] = True; Sow[FirstPosition[d, k][[1]]];
        s += k, {n, 3, nn}] ][[-1, 1]]

Formula

1 < a(n) <= A371909(n), where A371909(n) = A000005(A109735(n-1)), corollary of Sloane's theorem in the comments in A109890.
A109890(n) = T(j, k), where T = A027750, j = A109735(n-1), and k = a(n).
A371909(n) = A371910(n) if and only if A109890(n) = A109735(n-1).