cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371911 Zeroless analog of tribonacci numbers.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 17, 31, 57, 15, 13, 85, 113, 211, 49, 373, 633, 155, 1161, 1949, 3265, 6375, 11589, 21229, 39193, 7211, 67633, 11437, 86281, 165351, 26369, 2781, 19451, 4861, 2793, 2715, 1369, 6877, 1961, 127, 8965, 1153, 1245, 11363, 13761, 26369, 51493, 91623, 169485, 31261
Offset: 0

Views

Author

Bryle Morga, Apr 11 2024

Keywords

Comments

At n = 208666297 this sequence enters a cycle that has a period of 300056874 and begins: 2847, 26331, 5851, ... (only the first 3 terms of the cycle are needed to reproduce the entire cycle).
This can be compared with the sequence A243063, which enters a cycle that has a (relatively) small period of 912.

Examples

			a(9) = Zr(a(8) + a(7) + a(6)) = Zr(17 + 31 + 57) = Zr(105) = 15.
		

Crossrefs

Programs

  • Mathematica
    a[0]=a[1]=a[2]=1; a[n_]:=FromDigits[DeleteCases[IntegerDigits[a[n-1]+a[n-2]+a[n-3]],0]]; Array[a,50,0] (* Stefano Spezia, Apr 12 2024 *)
  • Python
    def a(n):
        a, b, c = 1, 1, 1
        for _ in range(n):
            a, b, c = b, c, int(str(a+b+c).replace('0', ''))
        return a
    
  • Python
    # faster for initial segment of sequence
    from itertools import islice
    def agen(): # generator of terms
        a, b, c = 1, 1, 1
        while True: yield a; a, b, c = b, c, int(str(a+b+c).replace("0", ""))
    print(list(islice(agen(), 50))) # Michael S. Branicky, Apr 13 2024

Formula

a(n) = Zr(a(n-1) + a(n-2) + a(n-3)), where the function Zr(k) removes all zero digits from k.