A371911 Zeroless analog of tribonacci numbers.
1, 1, 1, 3, 5, 9, 17, 31, 57, 15, 13, 85, 113, 211, 49, 373, 633, 155, 1161, 1949, 3265, 6375, 11589, 21229, 39193, 7211, 67633, 11437, 86281, 165351, 26369, 2781, 19451, 4861, 2793, 2715, 1369, 6877, 1961, 127, 8965, 1153, 1245, 11363, 13761, 26369, 51493, 91623, 169485, 31261
Offset: 0
Examples
a(9) = Zr(a(8) + a(7) + a(6)) = Zr(17 + 31 + 57) = Zr(105) = 15.
Programs
-
Mathematica
a[0]=a[1]=a[2]=1; a[n_]:=FromDigits[DeleteCases[IntegerDigits[a[n-1]+a[n-2]+a[n-3]],0]]; Array[a,50,0] (* Stefano Spezia, Apr 12 2024 *)
-
Python
def a(n): a, b, c = 1, 1, 1 for _ in range(n): a, b, c = b, c, int(str(a+b+c).replace('0', '')) return a
-
Python
# faster for initial segment of sequence from itertools import islice def agen(): # generator of terms a, b, c = 1, 1, 1 while True: yield a; a, b, c = b, c, int(str(a+b+c).replace("0", "")) print(list(islice(agen(), 50))) # Michael S. Branicky, Apr 13 2024
Formula
a(n) = Zr(a(n-1) + a(n-2) + a(n-3)), where the function Zr(k) removes all zero digits from k.
Comments