cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371912 Maximum Zagreb index of maximal 3-degenerate graphs with n vertices.

Original entry on oeis.org

12, 36, 66, 102, 144, 192, 246, 306, 372, 444, 522, 606, 696, 792, 894, 1002, 1116, 1236, 1362, 1494, 1632, 1776, 1926, 2082, 2244, 2412, 2586, 2766, 2952, 3144, 3342, 3546, 3756, 3972, 4194, 4422, 4656, 4896, 5142, 5394, 5652, 5916, 6186, 6462, 6744, 7032, 7326, 7626, 7932
Offset: 3

Views

Author

Allan Bickle, Apr 11 2024

Keywords

Comments

The Zagreb index of a graph is the sum of the squares of the degrees over all vertices of the graph.
A maximal 3-degenerate graph can be constructed from a 3-clique by iteratively adding a new 3-leaf (vertex of degree 3) adjacent to three existing vertices. The extremal graphs are 3-stars, so the bound also applies to 3-trees.

Examples

			The graph K_3 has 3 degree 2 vertices, so a(3) = 3*4 = 12.
		

Crossrefs

Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).

Programs

  • Mathematica
    Array[3*(#^2 + # - 8) &, 50, 3] (* Paolo Xausa, Jun 09 2024 *)

Formula

a(n) = 3*(n-1)^2 + 9*(n-3).
a(n) = 6*A046691(n-2) for n>2.
a(n) = 6*A060577(n-1) for n>3.
G.f.: 6*x^3*(2 - x^2)/(1 - x)^3. - Stefano Spezia, Apr 12 2024
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 5. - Chai Wah Wu, Apr 16 2024
Sum_{n>=3} 1/a(n) = 19/72 + Pi*tan(Pi*sqrt(33)/2)*sqrt(33)/99 = 0.1865497.... - R. J. Mathar, Apr 22 2024