A371954 Triangle read by rows where T(n,k) is the number of integer partitions of n that can be partitioned into k multisets with equal sums (k-quanimous).
1, 0, 1, 0, 2, 1, 0, 3, 0, 1, 0, 5, 3, 0, 1, 0, 7, 0, 0, 0, 1, 0, 11, 6, 4, 0, 0, 1, 0, 15, 0, 0, 0, 0, 0, 1, 0, 22, 14, 0, 5, 0, 0, 0, 1, 0, 30, 0, 10, 0, 0, 0, 0, 0, 1, 0, 42, 25, 0, 0, 6, 0, 0, 0, 0, 1, 0, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 77, 53, 30, 15, 0, 7, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 2 1 0 3 0 1 0 5 3 0 1 0 7 0 0 0 1 0 11 6 4 0 0 1 0 15 0 0 0 0 0 1 0 22 14 0 5 0 0 0 1 0 30 0 10 0 0 0 0 0 1 0 42 25 0 0 6 0 0 0 0 1 0 56 0 0 0 0 0 0 0 0 0 1 0 77 53 30 15 0 7 0 0 0 0 0 1 Row n = 6 counts the following partitions: . (6) (33) (222) . . (111111) (51) (321) (2211) (42) (3111) (21111) (411) (2211) (111111) (33) (21111) (321) (111111) (3111) (222) (2211) (21111) (111111)
Crossrefs
Programs
-
Mathematica
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[IntegerPartitions[n], Select[facs[Times@@Prime/@#], Length[#]==k&&SameQ@@hwt/@#&]!={}&]],{n,0,10},{k,0,n}]
Comments