A371955 Numbers with triquanimous prime indices.
8, 27, 36, 48, 64, 125, 150, 180, 200, 216, 240, 288, 320, 343, 384, 441, 490, 512, 567, 588, 630, 700, 729, 756, 784, 810, 840, 900, 972, 1000, 1008, 1080, 1120, 1200, 1296, 1331, 1344, 1440, 1600, 1694, 1728, 1792, 1815, 1920, 2156, 2178, 2197, 2304, 2310
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 8: {1,1,1} 27: {2,2,2} 36: {1,1,2,2} 48: {1,1,1,1,2} 64: {1,1,1,1,1,1} 125: {3,3,3} 150: {1,2,3,3} 180: {1,1,2,2,3} 200: {1,1,1,3,3} 216: {1,1,1,2,2,2} 240: {1,1,1,1,2,3} 288: {1,1,1,1,1,2,2} 320: {1,1,1,1,1,1,3} 343: {4,4,4} 384: {1,1,1,1,1,1,1,2} 441: {2,2,4,4} 490: {1,3,4,4} 512: {1,1,1,1,1,1,1,1,1} 567: {2,2,2,2,4} 588: {1,1,2,4,4}
Links
- Robert Israel, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Maple
tripart:= proc(L) local t,X,Y,n,cons,i,R; t:= convert(L,`+`)/3; n:= nops(L); if not t::integer then return false fi; cons:= [add(L[i]*X[i],i=1..n)=t, add(L[i]*Y[i],i=1..n)=t, seq(X[i] + Y[i] <= 1, i=1..n)]; R:= traperror(Optimization:-Maximize(0, cons, assume=binary)); R::list end proc: primeindices:= proc(n) local F,t; F:= ifactors(n)[2]; map(t -> numtheory:-pi(t[1])$t[2], F) end proc: select(tripart @ primindices, [$2..3000]); # Robert Israel, May 19 2025
-
Mathematica
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Select[Range[1000],Select[facs[#], Length[#]==3&&SameQ@@hwt/@#&]!={}&]
Comments